x
Filter:
Filters applied
- Statistics in Oncology Series
- 2017 - 2022Remove 2017 - 2022 filter
Keyword
- Clinical trial2
- Biomarker1
- Classification and prediction1
- Collaboration1
- Competing risks1
- Confirmation analysis1
- Cox model1
- Design1
- Effect Assessment1
- Exploratory analysis1
- Kaplan-Meier estimates1
- Log-rank test1
- Medical journals1
- Multivariable models1
- p value1
- Presenting1
- Principles1
- Regression models1
- Reporting1
- Statistical models1
- Statistical results1
- Survival analysis1
- Time-to-event data1
- Univariable models1
Statistics in Oncology Series
8 Results
- Statistics in Thoracic OncologyOpen Archive
Time-To-Event Data: An Overview and Analysis Considerations
Journal of Thoracic OncologyVol. 16Issue 7p1067–1074Published online: April 19, 2021- Jennifer Le-Rademacher
- Xiaofei Wang
Cited in Scopus: 2In oncology, overall survival and progression-free survival are common time-to-event end points used to measure treatment efficacy. Analyses of this type of data rely on a complex statistical framework and the analysis results are only valid when the data meet certain assumptions. This article provides an overview of time-to-event data, the basic mechanics of common analysis methods, and issues often encountered when analyzing such data. Our goal is to provide clinicians and other lung cancer researchers with the knowledge to choose the appropriate time-to-event analysis methods and to interpret the outcomes of such analyses appropriately. - Statistics in Oncology SeriesOpen Archive
Statistical Models in Clinical Studies
Journal of Thoracic OncologyVol. 16Issue 5p734–739Published online: February 25, 2021- Shigeyuki Matsui
- Jennifer Le-Rademacher
- Sumithra J. Mandrekar
Cited in Scopus: 1Although statistical models serve as the foundation of data analysis in clinical studies, their interpretation requires sufficient understanding of the underlying statistical framework. Statistical modeling is inherently a difficult task because of the general lack of information of the nature of observable data. In this article, we aim to provide some guidance when using regression models to aid clinical researchers to better interpret results from their statistical models and to encourage investigators to collaborate with a statistician to ensure that their studies are designed and analyzed appropriately. - Statistics in Oncology SeriesOpen Access
Biomarker Discovery and Validation: Statistical Considerations
Journal of Thoracic OncologyVol. 16Issue 4p537–545Published online: February 1, 2021- Fang-Shu Ou
- Stefan Michiels
- Yu Shyr
- Alex A. Adjei
- Ann L. Oberg
Cited in Scopus: 22Biomarkers have various applications including disease detection, diagnosis, prognosis, prediction of response to intervention, and disease monitoring. In this era of precision medicine, having validated biomarkers to inform clinical decision making is more important than ever. In this article, we discuss best the practices and potential issues in biomarker discovery and validation. We encourage team science partnerships to bring cutting-edge discovery from bench to bedside, leading to improved patient care and outcomes. - Special Article: Statistics in Oncology SeriesOpen Archive
Statistical Considerations for Subgroup Analyses
Journal of Thoracic OncologyVol. 16Issue 3p375–380Published online: December 26, 2020- Xiaofei Wang
- Steven Piantadosi
- Jennifer Le-Rademacher
- Sumithra J. Mandrekar
Cited in Scopus: 7Randomized clinical trials (RCTs) are conducted to evaluate the effect of an experimental treatment on outcomes of a target patient population. Eligibility criteria for large trials are often broad to ensure that the trial results can be generalized to a larger patient population. Subgroup analyses, either specified a priori or post hoc, are perfo rmed to evaluate the treatment effect specific to a subgroup of treated patients. Regardless of whether a subgroup analysis is specified a priori or post hoc, investigators must consider inflated false-positive rates, chance differences in observed treatment effects, low power for the comparisons of interest, and interpretation of the subgroup results. - Special Article: Statistics in Oncology SeriesOpen Archive
Guidelines for Statistical Reporting in Medical Journals
Journal of Thoracic OncologyVol. 15Issue 11p1722–1726Published online: August 25, 2020- Fang-Shu Ou
- Jennifer G. Le-Rademacher
- Karla V. Ballman
- Alex A. Adjei
- Sumithra J. Mandrekar
Cited in Scopus: 4Statistical methods are essential in medical research. They are used for data analysis and drawing appropriate conclusions. Clarity and accuracy of statistical reporting in medical journals can enhance readers’ understanding of the research conducted and the results obtained. In this manuscript, we provide guidelines for statistical reporting in medical journals for authors to consider, with a focus on the Journal of Thoracic Oncology. - EditorialOpen Archive
Introducing the Journal of Thoracic Oncology Statistical Series
Journal of Thoracic OncologyVol. 15Issue 8p1257Published in issue: August, 2020- Sumithra J. Mandrekar
- Jennifer Le-Rademacher
- Alex A. Adjei
Cited in Scopus: 0The Journal of Thoracic Oncology (JTO) is excited to introduce a series of brief articles on various statistical topics in the journal this year, starting with the current issue. As the mission of the JTO is to be the “primary educational and informational publication on topics relevant to the prevention, detection, diagnosis, and treatment of thoracic malignancies,” we strive to publish manuscripts of the highest scientific rigor in these areas. Rigorous research requires that studies are thoughtfully conceived, designed, and conducted; with data appropriately analyzed and interpreted; and conclusions meaningfully framed in a context that expands current knowledge. - Special Article Statistics in Oncology SeriesOpen Archive
Clinical Versus Statistical Significance in Studies of Thoracic Malignancies
Journal of Thoracic OncologyVol. 15Issue 9p1406–1408Published online: June 21, 2020- Suzanne E. Dahlberg
- Edward L. Korn
- Jennifer Le-Rademacher
- Sumithra J. Mandrekar
Cited in Scopus: 4The scientific synergy between statistics and medical research often leads to controversy when considering statistical versus clinical significance of findings from studies that are neither overwhelmingly practice-changing nor clearly negative. Studies can reach statistical significance but provide evidence that is not clinically meaningful, or results could not be statistically significant but very clinically relevant. To fully appreciate the debate about studies that fall in this gray area, one must understand how to interpret several features of statistical design and the interpretation of results. - Special Article Statistics in Oncology SeriesOpen Archive
Principles of Good Clinical Trial Design
Journal of Thoracic OncologyVol. 15Issue 8p1277–1280Published online: May 14, 2020- Ming-Wen An
- Quyen Duong
- Jennifer Le-Rademacher
- Sumithra J. Mandrekar
Cited in Scopus: 4Clinical trials are a fundamental component of medical research and serve as the main route to obtain evidence of the safety and efficacy of treatment before its approval. A trial’s ability to provide the intended evidence hinges on appropriate design, background knowledge, trial rationale to sample size, and interim monitoring rules. In this article, we present some general design principles for investigators and their research teams to consider when planning to conduct a trial.