Advertisement

MET alterations in NSCLC—Current Perspectives and Future Challenges

Published:October 28, 2022DOI:https://doi.org/10.1016/j.jtho.2022.10.015

      Abstract

      Targeted therapies have revolutionized the treatment and improved the outcome for oncogene-driven NSCLC and an increasing number of oncogenic driver therapies have become available. For MET-dysregulated NSCLC (especially MET exon 14 skipping mutations and MET-amplifications, which is one of the most common bypass mechanisms of resistance in oncogene-addicted NSCLC), several anti–MET-targeted therapies have been approved recently (MET exon 14 skipping mutation) and multiple others are in development. In this narrative review, we summarize the role of MET as an oncogenic driver in NSCLC, discuss the different testing methods for exon 14 skipping mutations, gene amplification, and protein overexpression, and review the existing data and ongoing clinical trials regarding targeted therapies in MET-altered NSCLC. As immunotherapy with or without chemotherapy has become the standard of care for advanced NSCLC, immunotherapy data for MET-dysregulated NSCLC are put into perspective. Finally, we discuss future challenges in this rapidly evolving landscape.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Thoracic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Frampton G.M.
        • Ali S.M.
        • Rosenzweig M.
        • et al.
        Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors.
        Cancer Discov. 2015; 5: 850-859
        • Socinski M.A.
        • Pennell N.A.
        • Davies K.D.
        MET Exon 14 skipping mutations in non-small-cell lung cancer: an overview of biology, clinical outcomes, and testing considerations.
        JCO Precis Oncol. 2021; 5 (PO.20.00516)
        • Awad M.M.
        • Oxnard G.R.
        • Jackman D.M.
        • et al.
        MET Exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression.
        J Clin Oncol. 2016; 34: 721-730
        • Lee J.K.
        • Madison R.
        • Classon A.
        • et al.
        Characterization of non-small-cell lung cancers with MET Exon 14 skipping alterations detected in tissue or liquid: clinicogenomics and real-world treatment patterns.
        JCO Precis Oncol. 2021; 5 (PO.21.00122)
        • Le X.
        • Hong L.
        • Hensel C.
        • et al.
        Landscape and clonal dominance of co-occurring genomic alterations in non-small-cell lung cancer harboring MET Exon 14 skipping.
        JCO Precis Oncol. 2021; 5 (PO.21.00135)
        • Saigi M.
        • McLeer-Florin A.
        • Pros E.
        • Nadal E.
        • Brambilla E.
        • Sanchez-Cespedes M.
        Genetic screening and molecular characterization of MET alterations in non-small cell lung cancer.
        Clin Transl Oncol. 2018; 20: 881-888
        • Wolf J.
        • Seto T.
        • Han J.Y.
        • et al.
        Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer.
        N Engl J Med. 2020; 383: 944-957
        • Liu X.
        • Jia Y.
        • Stoopler M.B.
        • et al.
        Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations.
        J Clin Oncol. 2016; 34: 794-802
        • Schrock A.B.
        • Frampton G.M.
        • Suh J.
        • et al.
        Characterization of 298 patients with lung cancer harboring MET Exon 14 skipping alterations.
        J Thorac Oncol. 2016; 11: 1493-1502
        • Descarpentries C.
        • Leprêtre F.
        • Escande F.
        • et al.
        Optimization of routine testing for MET Exon 14 splice site mutations in NSCLC patients.
        J Thorac Oncol. 2018; 13: 1873-1883
        • Poirot B.
        • Doucet L.
        • Benhenda S.
        • Champ J.
        • Meignin V.
        • Lehmann-Che J.
        MET Exon14 alterations and new resistance mutations to tyrosine kinase inhibitors: risk of inadequate detection with current amplicon-based NGS panels.
        J Thorac Oncol. 2017; 12: 1582-1587
        • Davies K.D.
        • Lomboy A.
        • Lawrence C.A.
        • et al.
        DNA-Based versus RNA-Based detection of MET Exon 14 skipping events in lung cancer.
        J Thorac Oncol. 2019; 14: 737-741
        • Kim E.K.
        • Kim K.A.
        • Lee C.Y.
        • et al.
        Molecular diagnostic assays and clinicopathologic implications of MET Exon 14 skipping mutation in non-small-cell lung cancer.
        Clin Lung Cancer. 2019; 20: e123-e132
        • Aguado C.
        • Teixido C.
        • Román R.
        • et al.
        Multiplex RNA-based detection of clinically relevant MET alterations in advanced non-small cell lung cancer.
        Mol Oncol. 2021; 15: 350-363
        • Paik P.K.
        • Felip E.
        • Veillon R.
        • et al.
        Tepotinib in non-small-cell lung cancer with MET Exon 14 skipping mutations.
        N Engl J Med. 2020; 383: 931-943
        • Noonan S.A.
        • Berry L.
        • Lu X.
        • et al.
        Identifying the appropriate FISH criteria for defining MET copy number-driven lung adenocarcinoma through oncogene overlap analysis.
        J Thorac Oncol. 2016; 11: 1293-1304
        • Onozato R.
        • Kosaka T.
        • Kuwano H.
        • Sekido Y.
        • Yatabe Y.
        • Mitsudomi T.
        Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers.
        J Thorac Oncol. 2009; 4: 5-11
        • Camidge D.R.
        • Otterson G.A.
        • Clark J.W.
        • et al.
        Crizotinib in patients with MET-amplified NSCLC.
        J Thorac Oncol. 2021; 16: 1017-1029
        • Recondo G.
        • Che J.
        • Jänne P.A.
        • Awad M.M.
        Targeting MET dysregulation in cancer.
        Cancer Discov. 2020; 10: 922-934
        • Yu H.A.
        • Suzawa K.
        • Jordan E.
        • et al.
        Concurrent alterations in EGFR-mutant lung cancers associated with resistance to EGFR kinase inhibitors and characterization of MTOR as a mediator of resistance.
        Clin Cancer Res. 2018; 24: 3108-3118
        • Schoenfeld A.J.
        • Chan J.M.
        • Kubota D.
        • et al.
        Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-mutant lung cancer.
        Clin Cancer Res. 2020; 26: 2654-2663
        • Guo R.
        • Luo J.
        • Chang J.
        • Rekhtman N.
        • Arcila M.
        • Drilon A.
        MET-dependent solid tumours – molecular diagnosis and targeted therapy.
        Nat Rev Clin Oncol. 2020; 17: 569-587
        • Wu Y.L.
        • Cheng Y.
        • Zhou J.
        • et al.
        Tepotinib plus gefitinib in patients with EGFR-mutant non-small-cell lung cancer with MET overexpression or MET amplification and acquired resistance to previous EGFR inhibitor (INSIGHT study): an open-label, phase 1b/2, multicentre, azertinib trial.
        Lancet Respir Med. 2020; 8: 1132-1143
        • Kron A.
        • Scheffler M.
        • Heydt C.
        • et al.
        Genetic heterogeneity of MET-aberrant NSCLC and its impact on the outcome of immunotherapy.
        J Thorac Oncol. 2021; 16: 572-582
        • Nahar R.
        • Zhai W.
        • Zhang T.
        • et al.
        Elucidating the genomic architecture of Asian EGFR-mutant lung adenocarcinoma through multi-region exome sequencing.
        Nat Commun. 2018; 9: 216
        • Salgia R.
        MET in lung cancer: biomarker selection based on scientific rationale.
        Mol Cancer Ther. 2017; 16: 555-565
        • Ichimura E.
        • Maeshima A.
        • Nakajima T.
        • Nakamura T.
        Expression of c-met/HGF receptor in human non-small cell lung carcinomas in vitro and in vivo and its prognostic significance.
        Jpn J Cancer Res. 1996; 87: 1063-1069
        • Guo R.
        • Berry L.D.
        • Aisner D.L.
        • et al.
        MET IHC is a poor screen for MET amplification or MET Exon 14 mutations in lung adenocarcinomas: data from a tri-institutional cohort of the lung cancer mutation consortium.
        J Thorac Oncol. 2019; 14: 1666-1671
        • Spigel D.R.
        • Edelman M.J.
        • O’Byrne K.
        • et al.
        Results from the Phase III randomized trial of onartuzumab plus erlotinib versus erlotinib in previously treated Stage IIIB or IV non-small-cell lung cancer: METLung.
        J Clin Oncol. 2017; 35: 412-420
        • Mignard X.
        • Ruppert A.M.
        • Antoine M.
        • et al.
        c-MET overexpression as a poor predictor of MET amplifications or Exon 14 mutations in lung sarcomatoid carcinomas.
        J Thorac Oncol. 2018; 13: 1962-1967
        • Casadevall D.
        • Gimeno J.
        • Clavé S.
        • et al.
        MET expression and copy number heterogeneity in nonsquamous non-small cell lung cancer (nsNSCLC).
        Oncotarget. 2015; 6: 16215-16226
        • Drilon A.
        • Clark J.W.
        • Weiss J.
        • et al.
        Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration.
        Nat Med. 2020; 26: 47-51
        • Moro-Sibilot D.
        • Cozic N.
        • Pérol M.
        • et al.
        Crizotinib in c-MET- or ROS1-positive NSCLC: results of the AcSé phase II trial.
        Ann Oncol. 2019; 30: 1985-1991
        • Landi L.
        • Chiari R.
        • Tiseo M.
        • et al.
        Crizotinib in MET-deregulated or ROS1-rearranged pretreated non-small cell lung cancer (METROS): A Phase II, prospective, multicenter, two-arms trial.
        Clin Cancer Res. 2019; 25: 7312-7319
        • Wolf J.
        • Garon E.B.
        • Groen H.J.M.
        • et al.
        26P Capmatinib in treatment (Tx)-I MET exon 14-mutated (METex14) advanced non-small cell lung Cancer (aNSCLC): updated results from GEOMETRY mono-1.
        Ann Oncol. 2022; 33: S27-S70
        • Wolf J.
        • Garon E.B.
        • Groen H.J.M.
        • et al.
        Capmatinib in MET exon 14-mutated, advanced NSCLC: updated results from the GEOMETRY mono-1 study.
        J Clin Oncol. 2021; 39 (9020–9020)
      1. Thomas M, Garassino M, Felip E, et al. OA03.05 tepotinib in patients with MET Exon 14 (METex14) skipping NSCLC: primary analysis of the confirmatory VISION cohort. Paper presented at: IASLC World Conference on Lung Cancer. August 6–9, 2022; Vienna, Austria.

        • Lu S.
        • Fang J.
        • Li X.
        • et al.
        Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring MET exon 14 skipping alterations: a multicentre, single-arm, open-label, phase 2 study.
        Lancet Respir Med. 2021; 9: 1154-1164
        • Lu S.
        • Fang J.
        • Li X.
        • et al.
        -2MO - Final OS results and subgroup analysis of savolitinib in patients with MET exon 14 skipping mutations (METex14+) NSCLC.
        Ann Oncol. 2022; 33: S27-S70
      2. Lu S, Yu Y, Zhou J, et al. Phase II study of SCC244 in NSCLC patients harboring MET Exon 14 skipping (METex14) mutations (GLORY study). Paper presented at: 2022 AACR Annual Meeting. April 8–13, 2022; New Orleans, LA.

        • Krebs M.
        • Spira A.I.
        • Cho B.C.
        • et al.
        Amivantamab in patients with NSCLC with MET exon 14 skipping mutation: updated results from the CHRYSALIS study.
        J Clin Oncol. 2022; 40 (9008–9008)
        • Le X.
        • Sakai H.
        • Felip E.
        • et al.
        Tepotinib efficacy and safety in patients with MET Exon 14 skipping NSCLC: outcomes in patient subgroups from the VISION study with relevance for clinical practice.
        Clin Cancer Res. 2022; 28: 1117-1126
        • Reck M.
        • Remon J.
        • Hellmann M.D.
        First-line immunotherapy for non-small-cell lung cancer.
        J Clin Oncol. 2022; 40: 586-597
        • Awad M.M.
        • Leonardi G.C.
        • Kravets S.
        • et al.
        Impact of MET inhibitors on survival among patients with non-small cell lung cancer harboring MET exon 14 mutations: a retrospective analysis.
        Lung Cancer. 2019; 133: 96-102
        • Cortot A.
        • Le X.
        • Smit E.
        • et al.
        Safety of MET tyrosine kinase inhibitors in patients with MET Exon 14 skipping non-small cell lung cancer: a clinical review.
        Clin Lung Cancer. 2022; 23: 195-207
        • Veillon R.
        • Sakai H.
        • Le X.
        • et al.
        Safety of tepotinib in patients with MET Exon 14 skipping NSCLC and recommendations for management.
        Clin Lung Cancer. 2022; 23: 320-332
        • Hong D.S.
        • Catenacci D.
        • Bazhenova L.
        • et al.
        Abstract P225: preliminary interim data of elzovantinib (TPX-0022), a novel inhibitor of MET/SRC/CSF1R, in patients with advanced solid tumors harboring genetic alterations in MET: update from the Phase 1 SHIELD-1 trial.
        Mol Cancer Ther. 2021; 20: P225
        • Guo R.
        • Offin M.
        • Brannon A.R.
        • et al.
        MET Exon 14-altered lung cancers and MET inhibitor resistance.
        Clin Cancer Res. 2021; 27: 799-806
        • Paik P.K.
        • Veillon R.
        • Felip E.
        • et al.
        METex14 ctDNA dynamics & resistance mechanisms detected in liquid biopsy (LBx) from patients (pts) with METex14 skipping NSCLC treated with tepotinib.
        J Clin Oncol. 2021; 39 (9012–9012)
        • Vijayaraghavan S.
        • Lipfert L.
        • Chevalier K.
        • et al.
        Amivantamab (JNJ-61186372), an Fc enhanced EGFR/cMet bispecific antibody, induces receptor downmodulation and antitumor activity by monocyte/macrophage trogocytosis.
        Mol Cancer Ther. 2020; 19: 2044-2056
        • Camidge D.R.
        • Janku F.
        • Martinez-Bueno A.
        • et al.
        Safety and preliminary clinical activity of the MET antibody mixture, Sym015 in advanced non-small cell lung cancer (NSCLC) patients with MET amplification/exon 14 deletion (METAmp/Ex14Δ).
        J Clin Oncol. 2020; 38 (9510–9510)
        • Camidge D.R.
        • Bar J.
        • Horinouchi H.
        • et al.
        Telisotuzumab vedotin (Teliso-V) monotherapy in patients (pts) with previously treated c-Met–overexpressing (OE) advanced non-small cell lung cancer (NSCLC).
        J Clin Oncol. 2022; 40 (9016–9016)
        • Camidge D.R.
        • Morgensztern D.
        • Heist R.S.
        • et al.
        Phase I study of 2- or 3-week dosing of telisotuzumab vedotin, an antibody-drug conjugate targeting c-met, monotherapy in patients with advanced non-small cell lung carcinoma.
        Clin Cancer Res. 2021; 27: 5781-5792
        • Waqar S.N.
        • Redman M.W.
        • Arnold S.M.
        • et al.
        A phase II study of telisotuzumab vedotin in patients with c-MET-positive stage IV or recurrent squamous cell lung cancer (LUNG-MAP sub-study S1400K, NCT03574753).
        Clin Lung Cancer. 2021; 22: 170-177
        • Camidge D.R.
        • Barlesi F.
        • Goldman J.W.
        • et al.
        A Phase 1b study of telisotuzumab vedotin in combination with nivolumab in patients with NSCLC.
        JTO Clin Res Rep. 2021; 3100262
        • Goldman J.W.
        • Horinouchi H.
        • Cho B.C.
        • et al.
        Phase 1/1b study of telisotuzumab vedotin (Teliso-V) + osimertinib (Osi), after failure on prior Osi, in patients with advanced, c-Met overexpressing, EGFR-mutated non-small cell lung cancer (NSCLC).
        J Clin Oncol. 2022; 40 (9013–9013)
        • Schuler M.
        • Berardi R.
        • Lim W.T.
        • et al.
        Molecular correlates of response to capmatinib in advanced non-small-cell lung cancer: clinical and biomarker results from a phase I trial.
        Ann Oncol. 2020; 31: 789-797
        • Wolf J.
        • Overbeck T.R.
        • Han J.Y.
        • et al.
        Capmatinib in patients with high-level MET-amplified advanced non–small cell lung cancer (NSCLC): results from the phase 2 GEOMETRY mono-1 study.
        J Clin Oncol. 2020; 38 (9509–9509)
        • Le X.
        • Paz-Ares L.G.
        • Van Meerbeeck J.
        • et al.
        Tepotinib in patients (pts) with advanced non-small cell lung cancer (NSCLC) with MET amplification (METamp).
        J Clin Oncol. 2021; 39 (9021–9021)
        • Engelman J.A.
        • Zejnullahu K.
        • Mitsudomi T.
        • et al.
        MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling.
        Science. 2007; 316: 1039-1043
        • Papadimitrakopoulou V.A.
        • Wu Y.
        • Han J.
        • et al.
        5121-Analysis of resistance mechanisms to osimertinib in patients with EGFR T790M advanced NSCLC from the AURA3 study.
        Ann Oncol. 2018; 29: viii741
        • Ramalingam S.S.
        • Cheng Y.
        • Zhou C.
        • et al.
        Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study.
        Ann Oncol. 2018; 29: viii740
        • Dagogo-Jack I.
        • Yoda S.
        • Lennerz J.K.
        • et al.
        MET alterations are a recurring and actionable resistance mechanism in ALK-positive lung cancer.
        Clin Cancer Res. 2020; 26: 2535-2545
        • Awad M.M.
        • Liu S.
        • Rybkin II,
        • et al.
        Acquired resistance to KRASG12C inhibition in cancer.
        N Engl J Med. 2021; 384: 2382-2393
        • Lin J.J.
        • Liu S.V.
        • McCoach C.E.
        • et al.
        Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer.
        Ann Oncol. 2020; 31: 1725-1733
        • Lin J.J.
        • Choudhury N.J.
        • Yoda S.
        • et al.
        Spectrum of mechanisms of resistance to crizotinib and lorlatinib in ROS1 fusion-positive lung cancer.
        Clin Cancer Res. 2021; 27: 2899-2909
        • Cocco E.
        • Schram A.M.
        • Kulick A.
        • et al.
        Resistance to TRK inhibition mediated by convergent MAPK pathway activation.
        Nat Med. 2019; 25: 1422-1427
        • Lai G.G.Y.
        • Lim T.H.
        • Lim J.
        • et al.
        Clonal MET amplification as a determinant of tyrosine kinase inhibitor resistance in epidermal growth factor receptor–mutant non–small-cell lung cancer.
        J Clin Oncol. 2019; 37: 876-884
        • Westover D.
        • Zugazagoitia J.
        • Cho B.C.
        • Lovly C.M.
        • Paz-Ares L.
        Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors.
        Ann Oncol. 2018; 29: i10-i19
        • Oxnard G.R.
        • Hu Y.
        • Mileham K.F.
        • et al.
        Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib.
        JAMA Oncol. 2018; 4: 1527-1534
        • Passaro A.
        • Jänne P.A.
        • Mok T.
        • Peters S.
        Overcoming therapy resistance in EGFR-mutant lung cancer.
        Nat Cancer. 2021; 2: 377-391
        • Ahn B.C.
        • Lee J.H.
        • Kim M.H.
        • et al.
        Distinct characteristics and clinical outcomes to predict the emergence of MET amplification in patients with non-small cell lung cancer who developed resistance after treatment with epidermal growth factor receptor tyrosine kinase inhibitors.
        Cancers (Basel). 2021; 13: 3096
        • Wu Y.L.
        • Zhang L.
        • Kim D.W.
        • et al.
        Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer.
        J Clin Oncol. 2018; 36: 3101-3109
        • Yang J.J.
        • Fang J.
        • Shu Y.Q.
        • et al.
        A phase Ib study of the highly selective MET-TKI savolitinib plus gefitinib in patients with EGFR-mutated, MET-amplified advanced non-small-cell lung cancer.
        Invest New Drugs. 2021; 39: 477-487
        • Sequist L.V.
        • Han J.Y.
        • Ahn M.J.
        • et al.
        Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study.
        Lancet Oncol. 2020; 21: 373-386
        • Yu H.A.
        • Ambrose H.
        • Baik C.
        • et al.
        1239P- ORCHARD osimertinib + savolitinib interim analysis: a biomarker-directed phase II platform study in patients (pts) with advanced non-small cell lung cancer (NSCLC) whose disease has progressed on first-line (1L) osimertinib.
        Ann Oncol. 2021; 32: S978-S1039
        • Bauml J.
        • Cho B.C.
        • Park K.
        • et al.
        Amivantamab in combination azertinibtinib for the treatment of osimertinib-relapsed, chemotherapy-naïve EGFR mutant (EGFRm) non-small cell lung cancer (NSCLC) and potential biomarkers for response.
        J Clin Oncol. 2021; 39 (9006–9006)
        • Leighl N.B.
        • Shu C.A.
        • Minchom A.
        • et al.
        Amivantamab monotherapy and in combination azertinibtinib in post-osimertinib EGFR-mutant NSCLC: analysis from the CHRYSALIS study.
        Ann Oncol. 2021; 32: S951-S952
        • Shu C.A.
        • Goto K.
        • Ohe Y.
        • et al.
        Amivantamabazertinibtinib in patients with EGFR-mutant non–small cell lung (NSCLC) after progression on osimertinib and platinum-based chemotherapy: updated results from CHRYSALIS-2.
        J Clin Oncol. 2022; 40 (9006–9006)
        • Shu C.A.
        • Goto K.
        • Ohe Y.
        • et al.
        Amivantamab azertinibtinib in post-osimertinib, post-platinum chemotherapy EGFR-mutant non-small cell lung cancer (NSCLC): preliminary results from CHRYSALIS-2.
        Ann Oncol. 2021; 32: S952-S953
        • Stewart E.L.
        • Mascaux C.
        • Pham N.A.
        • et al.
        Clinical utility of patient-derived xenografts to determine biomarkers of prognosis and map resistance pathways in EGFR-mutant lung adenocarcinoma.
        J Clin Oncol. 2015; 33: 2472-2480
        • Eser P.Ö.
        • Paranal R.M.
        • Son J.
        • et al.
        Oncogenic switch and single-agent MET inhibitor sensitivity in a subset of EGFR-mutant lung cancer.
        Sci Transl Med. 2021; 13eabb3738
        • Hrustanovic G.
        • Olivas V.
        • Pazarentzos E.
        • et al.
        RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer.
        Nat Med. 2015; 21: 1038-1047
        • Isozaki H.
        • Ichihara E.
        • Takigawa N.
        • et al.
        Non-small cell lung cancer cells acquire resistance to the ALK inhibitor alectinib by activating alternative receptor tyrosine kinases.
        Cancer Res. 2016; 76: 1506-1516
        • Crystal A.S.
        • Shaw A.T.
        • Sequist L.V.
        • et al.
        Patient-derived models of acquired resistance can identify effective drug combinations for cancer.
        Science. 2014; 346: 1480-1486
        • Tan A.C.
        • Tan D.S.W.
        Targeted therapies for lung cancer patients with oncogenic driver molecular alterations.
        J Clin Oncol. 2022; 40: 611-625
        • Rosen E.Y.
        • Johnson M.L.
        • Clifford S.E.
        • et al.
        Overcoming MET-dependent resistance to selective RET inhibition in patients with RET fusion-positive lung cancer by combining selpercatinib with crizotinib.
        Clin Cancer Res. 2021; 27: 34-42
        • Rotow J.
        • Bivona T.G.
        Understanding and targeting resistance mechanisms in NSCLC.
        Nat Rev Cancer. 2017; 17: 637-658
        • Lovly C.M.
        • Shaw A.T.
        Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies.
        Clin Cancer Res. 2014; 20: 2249-2256
        • Recondo G.
        • Bahcall M.
        • Spurr L.F.
        • et al.
        Molecular mechanisms of acquired resistance to MET tyrosine kinase inhibitors in patients with MET exon 14 mutant NSCLC.
        Clin Cancer Res. 2020; 26: 2615-2625
        • Guo R.
        • Offin M.
        • Brannon A.R.
        • et al.
        MET inhibitor resistance in patients with MET exon 14-altered lung cancers.
        J Clin Oncol. 2019; 37 (9006–9006)
        • Fujino T.
        • Kobayashi Y.
        • Suda K.
        • et al.
        Sensitivity and resistance of MET Exon 14 mutations in lung cancer to eight MET tyrosine kinase inhibitors in vitro.
        J Thorac Oncol. 2019; 14: 1753-1765
        • Li A.
        • Yang J.J.
        • Zhang X.C.
        • et al.
        Acquired MET Y1248H and D1246N mutations mediate resistance to MET inhibitors in non-small cell lung cancer.
        Clin Cancer Res. 2017; 23: 4929-4937
        • Engstrom L.D.
        • Aranda R.
        • Lee M.
        • et al.
        Glesatinib exhibits antitumor activity in lung cancer models and patients harboring MET Exon 14 mutations and overcomes mutation-mediated resistance to type I MET inhibitors in nonclinical models.
        Clin Cancer Res. 2017; 23: 6661-6672
        • Bahcall M.
        • Sim T.
        • Paweletz C.P.
        • et al.
        Acquired METD1228V mutation and resistance to MET inhibition in lung cancer.
        Cancer Discov. 2016; 6: 1334-1341
        • Pecci F.
        • Ricciuti B.
        • Alessi J.V.M.
        • et al.
        Activating MET kinase domain mutations define a novel molecular subtype of non–small cell lung cancer that is clinically targetable with the MET inhibitor elzovantinib (TPX-0022).
        J Clin Oncol. 2022; 40: 9124
        • Linehan W.M.
        • Spellman P.T.
        • et al.
        • Cancer Genome Atlas Research Network
        Comprehensive molecular characterization of papillary renal-cell carcinoma.
        N Engl J Med. 2016; 374: 135-145
        • Recondo G.
        • Facchinetti F.
        • Olaussen K.A.
        • Besse B.
        • Friboulet L.
        Making the first move in EGFR-driven or ALK-driven NSCLC: first-generation or next-generation TKI?.
        Nat Rev Clin Oncol. 2018; 15: 694-708
        • Dagogo-Jack I.
        • Moonsamy P.
        • Gainor J.F.
        • et al.
        A Phase 2 study of capmatinib in patients with MET-altered lung cancer previously treated with a MET inhibitor.
        J Thorac Oncol. 2021; 16: 850-859
        • Suzawa K.
        • Offin M.
        • Lu D.
        • et al.
        Activation of KRAS mediates resistance to targeted therapy in MET exon 14- mutant non-small cell lung cancer.
        Clin Cancer Res. 2019; 25: 1248-1260
        • Jamme P.
        • Fernandes M.
        • Copin M.C.
        • et al.
        Alterations in the PI3K pathway drive resistance to MET inhibitors in NSCLC harboring MET Exon 14 skipping mutations.
        J Thorac Oncol. 2020; 15: 741-751
        • Bahcall M.
        • Paweletz C.P.
        • Kuang Y.
        • et al.
        Combination of type I and Type II MET tyrosine kinase inhibitors as therapeutic approach to prevent resistance.
        Mol Cancer Ther. 2022; 21: 322-335
        • Recondo G.
        • Guo R.
        • Cravero P.
        • et al.
        Clinical characteristics, genomic features, and recurrence risk of early-stage MET exon 14 mutant non-small cell lung cancer (NSCLC).
        J Clin Oncol. 2020; 38 (9042–9042)
        • Wang F.
        • Liu Y.
        • Qiu W.
        • et al.
        Functional analysis of MET Exon 14 skipping alteration in cancer invasion and metastatic dissemination.
        Cancer Res. 2022; 82: 1365-1379
        • Cappuzzo F.
        • Marchetti A.
        • Skokan M.
        • et al.
        Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients.
        J Clin Oncol. 2009; 27: 1667-1674
        • Okuda K.
        • Sasaki H.
        • Yukiue H.
        • Yano M.
        • Fujii Y.
        Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer.
        Cancer Sci. 2008; 99: 2280-2285
        • Go H.
        • Jeon Y.K.
        • Park H.J.
        • Sung S.W.
        • Seo J.W.
        • Chung D.H.
        High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer.
        J Thorac Oncol. 2010; 5: 305-313
        • Zenke Y.
        • Matsumoto S.
        • Kato T.
        • et al.
        Clinical impact of targetable gene alterations on therapeutic outcomes in stage II/III locally advanced non-small cell lung cancer patients.
        J Clin Oncol. 2020; 38 (9038–9038)
        • Finn S.P.
        • Addeo A.
        • Dafni U.
        • et al.
        Prognostic impact of KRAS G12C mutation in patients with NSCLC: results from the European Thoracic Oncology Platform Lungscape project.
        J Thorac Oncol. 2021; 16: 990-1002
        • Saw S.P.L.
        • Zhou S.
        • Chen J.
        • et al.
        Association of clinicopathologic and molecular tumor features with recurrence in resected early-stage epidermal growth factor receptor-positive non-small cell lung cancer.
        JAMA Netw Open. 2021; 4e2131892
        • Wu Y.L.
        • Tsuboi M.
        • He J.
        • et al.
        Osimertinib in resected EGFR-mutated non–small-cell lung cancer.
        N Engl J Med. 2020; 383: 1711-1723
        • Saw S.P.L.
        • Ong B.H.
        • Chua K.L.M.
        • Takano A.
        • Tan D.S.W.
        Revisiting neoadjuvant therapy in non-small-cell lung cancer.
        Lancet Oncol. 2021; 22 (e501–e516)
        • Offin M.
        • Luo J.
        • Guo R.
        • et al.
        CNS metastases in patients with MET exon 14-altered lung cancers and outcomes with crizotinib.
        JCO Precis Oncol. 2020; 4 (PO.20.00098)
        • Digumarthy S.R.
        • Mendoza D.P.
        • Zhang E.W.
        • Lennerz J.K.
        • Heist R.S.
        Clinicopathologic and imaging features of non-small-cell lung cancer with MET exon 14 skipping mutations.
        Cancers (Basel). 2019; 11: 2033
        • Song Z.
        • Wang H.
        • Yu Z.
        • et al.
        De novo MET amplification in Chinese patients with non-small-cell lung cancer and treatment efficacy with crizotinib: a multicenter retrospective study.
        Clin Lung Cancer. 2019; 20: e171-e176
        • Friese-Hamim M.
        • Clark A.
        • Perrin D.
        • et al.
        Brain penetration and efficacy of tepotinib in orthotopic patient-derived xenograft models of MET-driven non-small cell lung cancer brain metastases.
        Lung Cancer. 2022; 163: 77-86
        • Garon E.B.
        • Heist R.S.
        • Seto T.
        • et al.
        Abstract CT082: Capmatinib in METex14-mutated (mut) advanced non-small cell lung cancer (NSCLC): results from the phase II GEOMETRY mono-1 study, including efficacy in patients (pts) with brain metastases (BM).
        Cancer Res. 2020; 80: CT082
        • Sabari J.K.
        • Leonardi G.C.
        • Shu C.A.
        • et al.
        PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers.
        Ann Oncol. 2018; 29: 2085-2091
        • Mazieres J.
        • Drilon A.
        • Lusque A.
        • et al.
        Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry.
        Ann Oncol. 2019; 30: 1321-1328
        • Mayenga M.
        • Assié J.B.
        • Monnet I.
        • et al.
        Durable responses to immunotherapy of non-small cell lung cancers harboring MET exon-14-skipping mutation: a series of 6 cases.
        Lung Cancer. 2020; 150: 21-25
        • Guisier F.
        • Dubos-Arvis C.
        • Viñas F.
        • et al.
        Efficacy and safety of anti-PD-1 immunotherapy in patients with advanced NSCLC with BRAF, HER2, or MET mutations or RET translocation: GFPC 01–2018.
        J Thorac Oncol. 2020; 15: 628-636
        • Dempke W.C.M.
        • Fenchel K.
        Has programmed cell death ligand-1 MET an accomplice in non-small cell lung cancer?-a narrative review.
        Transl Lung Cancer Res. 2021; 10: 2667-2682