Advertisement

SCLC: Epidemiology, Risk Factors, Genetic Susceptibility, Molecular Pathology, Screening, and Early Detection

Published:October 11, 2022DOI:https://doi.org/10.1016/j.jtho.2022.10.002

      Abstract

      We review research regarding the epidemiology, risk factors, genetic susceptibility, molecular pathology, and early detection of SCLC, a deadly tumor that accounts for 14% of lung cancers. We first summarize the changing incidences of SCLC globally and in the United States among males and females. We then review the established risk factor (i.e., tobacco smoking) and suspected nonsmoking-related risk factors for SCLC, and emphasize the importance of continued effort in tobacco control worldwide. Review of genetic susceptibility and molecular pathology suggests different molecular pathways in SCLC development compared with other types of lung cancer. Last, we comment on the limited utility of low-dose computed tomography screening in SCLC and on several promising blood-based molecular biomarkers as potential tools in SCLC early detection.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Thoracic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • International Agency for Research on Cancer World Health Organization
        GLOBOCAN.
        http://globocan.iarc.fr
        Date accessed: July 15, 2022
        • National Cancer Institute
        Surveillance, Epidemiology, and End Results Program. Cancer Stat Facts: lung and bronchus cancer.
        • American Cancer Society
        Key Statistics for Lung Cancer. Atlanta GACS.
        • Govindan R.
        • Page N.
        • Morgensztern D.
        • et al.
        Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database.
        J Clin Oncol. 2006; 24: 4539-4544
        • George J.
        • Lim J.S.
        • Jang S.J.
        • et al.
        Comprehensive genomic profiles of small cell lung cancer.
        Nature. 2015; 524: 47-53
        • Ten Haaf K.
        • van Rosmalen J.
        • de Koning H.J.
        Lung cancer detectability by test, histology, stage, and gender: estimates from the NLST and the PLCO trials.
        Cancer Epidemiol Biomarkers Prev. 2015; 24: 154-161
        • Rudin C.M.
        • Brambilla E.
        • Faivre-Finn C.
        • Sage J.
        Small-cell lung cancer.
        Nat Rev Dis Primers. 2021; 7: 3
        • Islami F.
        • Torre L.A.
        • Jemal A.
        Global trends of lung cancer mortality and smoking prevalence.
        Transl Lung Cancer Res. 2015; 4: 327-338
        • Dai X.
        • Gakidou E.
        • Lopez A.D.
        Evolution of the global smoking epidemic over the past half century: strengthening the evidence base for policy action.
        Tob Control. 2022; 31: 129-137
        • Huang J.
        • Deng Y.
        • Tin M.S.
        • et al.
        Distribution, risk factors, and temporal trends for lung cancer incidence and mortality: a global analysis.
        Chest. 2022; 161: 1101-1111
        • International Agency for Research Cancer
        CI5XI cancer incidence in five continents volume XI: summary table by histological type, lung.
        • Surveillance Research Program, National Cancer Institute
        SEER. ∗Explorer: an interactive website for SEER cancer statistics.
        https://seer.cancer.gov/explorer/
        Date accessed: April 18, 2022
        • Howlader N.
        • Forjaz G.
        • Mooradian M.J.
        • et al.
        The effect of advances in lung-cancer treatment on population mortality.
        N Engl J Med. 2020; 383: 640-649
        • Cummings K.M.
        • Proctor R.N.
        The changing public image of smoking in the United States: 1964–2014.
        Cancer Epidemiol Biomarkers Prev. 2014; 23: 32-36
        • Tapan U.
        • Furtado V.F.
        • Qureshi M.M.
        • Everett P.
        • Suzuki K.
        • Mak K.S.
        Racial and other healthcare disparities in patients with extensive-stage SCLC.
        JTO Clin Res Rep. 2021; 2: 100109
        • Meza R.
        • Meernik C.
        • Jeon J.
        • Cote M.L.
        Lung cancer incidence trends by gender, race and histology in the United States, 1973–2010.
        PLoS One. 2015; 10 (e0121323)
        • Thomas P.L.
        • Madubata C.J.
        • Aldrich M.C.
        • et al.
        A call to action: dismantling racial injustices in preclinical research and clinical care of black patients living with small cell lung cancer.
        Cancer Discov. 2021; 11: 240-244
        • Hovanec J.
        • Siemiatycki J.
        • Conway D.I.
        • et al.
        Lung cancer and socioeconomic status in a pooled analysis of case-control studies.
        PLoS One. 2018; 13 (e0192999)
        • Wang S.
        • Tang J.
        • Sun T.
        • et al.
        Survival changes in patients with small cell lung cancer and disparities between different sexes, socioeconomic statuses and ages.
        Sci Rep. 2017; 7: 1339
        • Horn L.
        • Mansfield A.S.
        • Szczesna A.
        • et al.
        First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer.
        N Engl J Med. 2018; 379: 2220-2229
        • Paz-Ares L.
        • Dvorkin M.
        • Chen Y.
        • et al.
        Durvalumab plus platinum–etoposide versus platinum–etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial.
        Lancet. 2019; 394: 1929-1939
        • Dingemans A.C.
        • Fruh M.
        • Ardizzoni A.
        • et al.
        Small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.
        Ann Oncol. 2021; 32: 839-853
        • National Comprehensive Cancer Network Guidelines
        Small cell lung cancer, version 2.2022.
        • Cheng Y.
        • Han L.
        • Wu L.
        • et al.
        Serplulimab, a novel anti-PD-1 antibody, plus chemotherapy versus chemotherapy alone as first-line treatment for extensive-stage small-cell lung cancer: an international randomized phase 3 study.
        J Clin Oncol. 2022; 40 (8505–8505)
        • Wang J.
        • Zhou C.
        • Yao W.
        • et al.
        Adebrelimab or placebo plus carboplatin and etoposide as first-line treatment for extensive-stage small-cell lung cancer (CAPSTONE-1): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial.
        Lancet Oncol. 2022; 23: 739-747
        • Gandhi L.
        • Rodriguez-Abreu D.
        • Gadgeel S.
        • et al.
        Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer.
        N Engl J Med. 2018; 378: 2078-2092
        • Hegmann K.T.
        • Fraser A.M.
        • Keaney R.P.
        • et al.
        The effect of age at smoking initiation on lung cancer risk.
        Epidemiol (Camb Mass). 1993; 4: 444-448
        • Lubin J.H.
        • Caporaso N.E.
        Cigarette smoking and lung cancer: modeling total exposure and intensity.
        Cancer Epidemiol Biomarkers Prev. 2006; 15: 517-523
        • Khuder S.A.
        Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis.
        Lung Cancer. 2001; 31: 139-148
        • Pesch B.
        • Kendzia B.
        • Gustavsson P.
        • et al.
        Cigarette smoking and lung cancer–relative risk estimates for the major histological types from a pooled analysis of case-control studies.
        Int J Cancer. 2012; 131: 1210-1219
        • Pleasants R.A.
        • Rivera M.P.
        • Tilley S.L.
        • Bhatt S.P.
        Both duration and pack-years of tobacco smoking should be used for clinical practice and research.
        Ann Am Thorac Soc. 2020; 17: 804-806
        • Hymowitz N.
        Cigarette smoking and lung cancer: pediatric roots.
        Lung Cancer Int. 2012; 2012: 790841
        • Doll R.
        • Peto R.
        Cigarette smoking and bronchial carcinoma: dose and time relationships among regular smokers and lifelong non-smokers.
        J Epidemiol Community Health. 1978; 32: 303-313
        • Reitsma M.B.
        • Flor L.S.
        • Mullany E.C.
        • Gupta V.
        • Hay S.I.
        • Gakidou E.
        Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and initiation among young people in 204 countries and territories, 1990–2019.
        Lancet Public Health. 2021; 6: e472-e481
        • Jerzynski T.
        • Stimson G.V.
        • Shapiro H.
        • Król G.
        Estimation of the global number of e-cigarette users in 2020.
        Harm Reduct J. 2021; 18: 109
        • Pan L.
        • Morton J.
        • Mbulo L.
        • Dean A.
        • Ahluwalia I.B.
        Electronic cigarette use among adults in 14 countries: a cross-sectional study.
        EClinicalMedicine. 2022; 47: 101401
        • Bracken-Clarke D.
        • Kapoor D.
        • Baird A.M.
        • et al.
        Vaping and lung cancer—a review of current data and recommendations.
        Lung Cancer. 2021; 153: 11-20
        • Brooks D.R.
        • Austin J.H.
        • Heelan R.T.
        • et al.
        Influence of type of cigarette on peripheral versus central lung cancer.
        Cancer Epidemiol Biomarkers Prev. 2005; 14: 576-581
        • Ito H.
        • Matsuo K.
        • Tanaka H.
        • et al.
        Nonfilter and filter cigarette consumption and the incidence of lung cancer by histological type in Japan and the United States: analysis of 30-year data from population-based cancer registries.
        Int J Cancer. 2011; 128: 1918-1928
        • Ettinger D.S.
        • Aisner J.
        Changing face of small-cell lung cancer: real and artifact.
        J Clin Oncol. 2006; 24: 4526-4527
        • Flor L.S.
        • Reitsma M.B.
        • Gupta V.
        • Ng M.
        • Gakidou E.
        The effects of tobacco control policies on global smoking prevalence.
        Nat Med. 2021; 27: 239-243
        • Ou S.H.
        • Ziogas A.
        • Zell J.A.
        Prognostic factors for survival in extensive stage small cell lung cancer (ED-SCLC): the importance of smoking history.
        J Thorac Oncol. 2009; 4: 37-43
        • Varghese A.M.
        • Zakowski M.F.
        • Yu H.A.
        • et al.
        Small-cell lung cancers in patients who never smoked cigarettes.
        J Thorac Oncol. 2014; 9: 892-896
        • Rodríguez-Martínez Á.
        • Torres-Durán M.
        • Barros-Dios J.M.
        • Ruano-Ravina A.
        Residential radon and small cell lung cancer. A systematic review.
        Cancer Lett. 2018; 426: 57-62
        • Ruano-Ravina A.
        • Faraldo-Valles M.J.
        • Barros-Dios J.M.
        Is there a specific mutation of p53 gene due to radon exposure? A systematic review.
        Int J Radiat Biol. 2009; 85: 614-621
        • Mogi A.
        • Kuwano H.
        TP53 mutations in nonsmall cell lung cancer.
        J Biomed Biotechnol. 2011; 2011: 583929
        • Field R.W.
        • Withers B.L.
        Occupational and environmental causes of lung cancer.
        Clin Chest Med. 2012; 33: 681-703
        • Driscoll T.
        • Nelson D.I.
        • Steenland K.
        • et al.
        The global burden of disease due to occupational carcinogens.
        Am J Ind Med. 2005; 48: 419-431
        • Kim C.H.
        • Lee Y.C.
        • Hung R.J.
        • et al.
        Exposure to secondhand tobacco smoke and lung cancer by histological type: a pooled analysis of the International Lung Cancer Consortium (ILCCO).
        Int J Cancer. 2014; 135: 1918-1930
        • Du Y.
        • Cui X.
        • Sidorenkov G.
        • et al.
        Lung cancer occurrence attributable to passive smoking among never smokers in China: a systematic review and meta-analysis.
        Transl Lung Cancer Res. 2020; 9: 204-217
        • Baik C.S.
        • Strauss G.M.
        • Speizer F.E.
        • Feskanich D.
        Reproductive factors, hormone use, and risk for lung cancer in postmenopausal women, the Nurses’ Health Study.
        Cancer Epidemiol Biomarkers Prev. 2010; 19: 2525-2533
        • Pesatori A.C.
        • Carugno M.
        • Consonni D.
        • et al.
        Hormone use and risk for lung cancer: a pooled analysis from the International Lung Cancer Consortium (ILCCO).
        Br J Cancer. 2013; 109: 1954-1964
        • Wang Q.
        • Ru M.
        • Zhang Y.
        • Kurbanova T.
        • Boffetta P.
        Dietary phytoestrogen intake and lung cancer risk: an analysis of the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening trial.
        Carcinogenesis. 2021; 42: 1250-1259
        • Wang Q.
        • Hashemian M.
        • Sepanlou S.G.
        • et al.
        Dietary quality using four dietary indices and lung cancer risk: the Golestan Cohort Study (GCS).
        Cancer Causes Control CCC. 2021; 32: 493-503
        • Amos C.I.
        • Wu X.
        • Broderick P.
        • et al.
        Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1.
        Nat Genet. 2008; 40: 616-622
        • Hung R.J.
        • McKay J.D.
        • Gaborieau V.
        • et al.
        A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25.
        Nature. 2008; 452: 633-637
        • Timofeeva M.N.
        • Hung R.J.
        • Rafnar T.
        • et al.
        Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls.
        Hum Mol Genet. 2012; 21: 4980-4995
        • Wang Y.
        • Broderick P.
        • Webb E.
        • et al.
        Common 5p15.33 and 6p21.33 variants influence lung cancer risk.
        Nat Genet. 2008; 40: 1407-1409
        • Wang J.
        • Liu Q.
        • Yuan S.
        • et al.
        Genetic predisposition to lung cancer: comprehensive literature integration, meta-analysis, and multiple evidence assessment of candidate-gene association studies.
        Sci Rep. 2017; 7: 8371
        • Manolio T.A.
        • Collins F.S.
        • Cox N.J.
        • et al.
        Finding the missing heritability of complex diseases.
        Nature. 2009; 461: 747-753
        • Truong T.
        • Hung R.J.
        • Amos C.I.
        • et al.
        Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium.
        J Natl Cancer Inst. 2010; 102: 959-971
        • Landi M.T.
        • Chatterjee N.
        • Yu K.
        • et al.
        A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma.
        Am J Hum Genet. 2009; 85: 679-691
      1. Sivakumar S, Moore JA, Montesion M, et al. Integrative analysis of a large real-world cohort of small cell lung cancer identifies distinct genetic subtypes and insights into histological transformation. bioRxiv. https://www.biorxiv.org/content/10.1101/2022.07.27.501738v1.article-info. Accessed August 5, 2022.

      2. National Cancer Institute, The Cancer Genome Atlas Program. https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga. Accessed August 5, 2021.

        • Tlemsani C.
        • Takahashi N.
        • Pongor L.
        • et al.
        Whole-exome sequencing reveals germline-mutated small cell lung cancer subtype with favorable response to DNA repair-targeted therapies.
        Sci Transl Med. 2021; 13 (eabc7488)
        • Bychkovsky B.L.
        • Li T.
        • Sotelo J.
        • et al.
        Identification and management of pathogenic variants in BRCA1, BRCA2, and PALB2 in a tumor-only genomic testing program.
        Clin Cancer Res. 2022; 28: 2349-2360
        • Woll P.
        • Gaunt P.
        • Danson S.
        • et al.
        Olaparib as maintenance treatment in patients with chemosensitive small cell lung cancer (STOMP): a randomised, double-blind, placebo-controlled phase II trial.
        Lung Cancer. 2022; 171: 26-33
        • Ai X.
        • Pan Y.
        • Shi J.
        • et al.
        Efficacy and safety of niraparib as maintenance treatment in patients with extensive-stage SCLC after first-line chemotherapy: a randomized, double-blind, phase 3 study.
        J Thorac Oncol. 2021; 16: 1403-1414
        • Goldman J.
        • Cummings A.
        • Mendenhall M.
        • et al.
        OA12.03 Phase 2 study analysis of talazoparib (TALA) plus temozolomide (TMZ) for extensive-stage small cell lung cancer (ES-SCLC).
        J Thorac Oncol. 2022; 17: S32
        • Moore K.
        • Colombo N.
        • Scambia G.
        • et al.
        Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer.
        N Engl J Med. 2018; 379: 2495-2505
        • Robson M.
        • Im S.A.
        • Senkus E.
        • et al.
        Olaparib for metastatic breast cancer in patients with a germline BRCA mutation.
        N Engl J Med. 2017; 377: 523-533
        • Hussain M.
        • Mateo J.
        • Fizazi K.
        • et al.
        Survival with olaparib in metastatic castration-resistant prostate cancer.
        N Engl J Med. 2020; 383: 2345-2357
        • Golan T.
        • Hammel P.
        • Reni M.
        • et al.
        Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer.
        N Engl J Med. 2019; 381: 317-327
        • Brownson R.C.
        • Chang J.C.
        • Davis J.R.
        Gender and histologic type variations in smoking-related risk of lung cancer.
        Epidemiolology. 1992; 3: 61-64
        • Murray N.
        • Turrisi A.T.
        A review of first-line treatment for small-cell lung cancer.
        J Thorac Oncol. 2006; 1: 270-278
        • Yang F.
        • Gao Y.
        • Geng J.
        • et al.
        Elevated expression of SOX2 and FGFR1 in correlation with poor prognosis in patients with small cell lung cancer.
        Int J Clin Exp Pathol. 2013; 6: 2846-2854
        • Thorgeirsson T.E.
        • Geller F.
        • Sulem P.
        • et al.
        A variant associated with nicotine dependence, lung cancer and peripheral arterial disease.
        Nature. 2008; 452: 638-642
        • Wistuba I.I.
        • Gazdar A.F.
        • Minna J.D.
        Molecular genetics of small cell lung carcinoma.
        Semin Oncol. 2001; 28: 3-13
        • Peifer M.
        • Fernandez-Cuesta L.
        • Sos M.L.
        • et al.
        Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer.
        Nat Genet. 2012; 44: 1104-1110
        • Hainaut P.
        • Pfeifer G.P.
        Patterns of p53 G-->T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke.
        Carcinogenesis. 2001; 22: 367-374
        • Dick F.A.
        • Rubin S.M.
        Molecular mechanisms underlying RB protein function.
        Nat Rev Mol Cell Biol. 2013; 14: 297-306
        • Meuwissen R.
        • Linn S.C.
        • Linnoila R.I.
        • Zevenhoven J.
        • Mooi W.J.
        • Berns A.
        Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model.
        Cancer Cell. 2003; 4: 181-189
        • Schaffer B.E.
        • Park K.S.
        • Yiu G.
        • et al.
        Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma.
        Cancer Res. 2010; 70: 3877-3883
        • Lazaro S.
        • Perez-Crespo M.
        • Enguita A.B.
        • et al.
        Ablating all three retinoblastoma family members in mouse lung leads to neuroendocrine tumor formation.
        Oncotarget. 2017; 8: 4373-4386
        • George J.
        • Walter V.
        • Peifer M.
        • et al.
        Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors.
        Nat Commun. 2018; 9: 1048
        • Collins B.J.
        • Kleeberger W.
        • Ball D.W.
        Notch in lung development and lung cancer.
        Semin Cancer Biol. 2004; 14: 357-364
        • Oser M.G.
        • Sabet A.H.
        • Gao W.
        • et al.
        The KDM5A/RBP2 histone demethylase represses NOTCH signaling to sustain neuroendocrine differentiation and promote small cell lung cancer tumorigenesis.
        Genes Dev. 2019; 33: 1718-1738
        • Owen D.H.
        • Giffin M.J.
        • Bailis J.M.
        • Smit M.D.
        • Carbone D.P.
        • He K.
        DLL3: an emerging target in small cell lung cancer.
        J Hematol Oncol. 2019; 12: 61
        • Meder L.
        • Konig K.
        • Ozretic L.
        • et al.
        NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas.
        Int J Cancer. 2016; 138: 927-938
        • Borromeo M.D.
        • Savage T.K.
        • Kollipara R.K.
        • et al.
        ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs.
        Cell Rep. 2016; 16: 1259-1272
        • Mollaoglu G.
        • Guthrie M.R.
        • Böhm S.
        • et al.
        MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to Aurora kinase inhibition.
        Cancer Cell. 2017; 31: 270-285
        • Sabari J.K.
        • Paik P.K.
        Relevance of genetic alterations in squamous and small cell lung cancer.
        Ann Transl Med. 2017; 5: 373
        • Osborne J.K.
        • Larsen J.E.
        • Gonzales J.X.
        • et al.
        NeuroD1 regulation of migration accompanies the differential sensitivity of neuroendocrine carcinomas to TrkB inhibition.
        Oncogenesis. 2013; 2: e63
        • Attar N.
        • Kurdistani S.K.
        Exploitation of EP300 and crebbp lysine acetyltransferases by cancer.
        Cold Spring Harb Perspect Med. 2017; 7 (a026534)
        • Jia D.
        • Augert A.
        • Kim D.W.
        • et al.
        Crebbp loss drives small cell lung cancer and increases sensitivity to HDAC inhibition.
        Cancer Discov. 2018; 8: 1422-1437
        • Rao R.C.
        • Dou Y.
        Hijacked in cancer: the KMT2 (MLL) family of methyltransferases.
        Nat Rev Cancer. 2015; 15: 334-346
        • Augert A.
        • Zhang Q.
        • Bates B.
        • et al.
        Small cell lung cancer exhibits frequent inactivating mutations in the histone methyltransferase KMT2D/MLL2: CALGB 151111 (alliance).
        J Thorac Oncol. 2017; 12: 704-713
        • Rudin C.M.
        • Poirier J.T.
        • Byers L.A.
        • et al.
        Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data.
        Nat Rev Cancer. 2019; 19: 289-297
        • Huang Y.H.
        • Klingbeil O.
        • He X.Y.
        • et al.
        POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer.
        Genes Dev. 2018; 32: 915-928
        • Owonikoko T.K.
        • Elliott A.
        • Dwivedi B.
        • et al.
        Surfaceome profiling to reveal unique therapeutic vulnerabilities in transcriptional subtypes of small cell lung cancer (SCLC).
        J Clin Oncol. 2022; 40 (8515–8515)
        • Gay C.M.
        • Stewart C.A.
        • Park E.M.
        • et al.
        Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities.
        Cancer Cell. 2021; 39: 346-360.e7
        • The US Preventive Services Task
        The US Preventive Services Task recommendations: lung cancer screening.
        • Thomas A.
        • Pattanayak P.
        • Szabo E.
        • Pinsky P.
        Characteristics and outcomes of small cell lung cancer detected by CT screening.
        Chest. 2018; 154: 1284-1290
        • Silva M.
        • Galeone C.
        • Sverzellati N.
        • et al.
        Screening with low-dose computed tomography does not improve survival of small cell lung cancer.
        J Thorac Oncol. 2016; 11: 187-193
        • Cuffe S.
        • Moua T.
        • Summerfield R.
        • Roberts H.
        • Jett J.
        • Shepherd F.A.
        Characteristics and outcomes of small cell lung cancer patients diagnosed during two lung cancer computed tomographic screening programs in heavy smokers.
        J Thorac Oncol. 2011; 6: 818-822
        • de Koning H.J.
        • van der Aalst C.M.
        • de Jong P.A.
        • et al.
        Reduced lung-cancer mortality with volume CT screening in a randomized trial.
        N Engl J Med. 2020; 382: 503-513
        • Paci E.
        • Puliti D.
        • Lopes Pegna A.
        • et al.
        Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial.
        Thorax. 2017; 72: 825-831
        • Jemal A.
        • Fedewa S.A.
        Lung cancer screening with low-dose computed tomography in the United States—2010 to 2015.
        JAMA Oncol. 2017; 3: 1278-1281
        • Xie H.
        • Li Y.
        • Wang Q.
        • Fujiwara Y.
        • Kurbanova T.
        • Theodoropoulos N.
        MA04.02 lung cancer screening utilization and its correlates in sexual minorities: an analysis of the BRFSS 2018.
        J Thorac Oncol. 2021; 16: S144
        • Melzer A.C.
        • Wilt T.J.
        Expanded access to lung cancer screening-implementing wisely to optimize health.
        JAMA Netw Open. 2021; 4 (e210275)
        • Seijo L.M.
        • Peled N.
        • Ajona D.
        • et al.
        Biomarkers in lung cancer screening: achievements, promises, and challenges.
        J Thorac Oncol. 2019; 14: 343-357
        • Hodgkinson C.L.
        • Morrow C.J.
        • Li Y.
        • et al.
        Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer.
        Nat Med. 2014; 20: 897-903
        • Foy V.
        • Fernandez-Gutierrez F.
        • Faivre-Finn C.
        • Dive C.
        • Blackhall F.
        The clinical utility of circulating tumour cells in patients with small cell lung cancer.
        Transl Lung Cancer Res. 2017; 6: 409-417
        • Dama E.
        • Colangelo T.
        • Fina E.
        • et al.
        Biomarkers and lung cancer early detection: state of the art.
        Cancers (Basel). 2021; 13: 3919
        • Poggiana C.
        • Rossi E.
        • Zamarchi R.
        Possible role of circulating tumor cells in early detection of lung cancer.
        J Thorac Dis. 2020; 12: 3821-3835
        • Li Y.
        • Tian X.
        • Gao L.
        • et al.
        Clinical significance of circulating tumor cells and tumor markers in the diagnosis of lung cancer.
        Cancer Med. 2019; 8: 3782-3792
        • Qian C.
        • Wu S.
        • Chen H.
        • et al.
        Clinical significance of circulating tumor cells from lung cancer patients using microfluidic chip.
        Clin Exp Med. 2018; 18: 191-202
        • Tanaka F.
        • Yoneda K.
        • Kondo N.
        • et al.
        Circulating tumor cell as a diagnostic marker in primary lung cancer.
        Clin Cancer Res. 2009; 15: 6980-6986
        • Ilie M.
        • Hofman V.
        • Long-Mira E.
        • et al.
        “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease.
        PLoS One. 2014; 9 (e111597)
        • Marquette C.-H.
        • Boutros J.
        • Benzaquen J.
        • et al.
        Circulating tumour cells as a potential biomarker for lung cancer screening: a prospective cohort study.
        Lancet Respir Med. 2020; 8: 709-716
        • Wan J.C.M.
        • Massie C.
        • Garcia-Corbacho J.
        • et al.
        Liquid biopsies come of age: towards implementation of circulating tumour DNA.
        Nat Rev Cancer. 2017; 17: 223-238
        • Fernandes M.G.O.
        • Sousa C.
        • Pereira Reis J.
        • et al.
        Liquid biopsy for disease monitoring in non-small cell lung cancer: the link between biology and the clinic.
        Cells. 2021; 10: 1912
        • Horn L.
        • Whisenant J.G.
        • Wakelee H.
        • et al.
        Monitoring therapeutic response and resistance: analysis of circulating tumor DNA in patients with ALK+ lung cancer.
        J Thorac Oncol. 2019; 14: 1901-1911
        • Song Y.
        • Hu C.
        • Xie Z.
        • et al.
        Circulating tumor DNA clearance predicts prognosis across treatment regimen in a large real-world longitudinally monitored advanced non-small cell lung cancer cohort.
        Transl Lung Cancer Res. 2020; 9: 269-279
        • US Food and Drug Administration
        Medical devices, list of cleared or approved companion diagnostic devices (in vitro and imaging tools).
        • Du M.
        • Thompson J.
        • Fisher H.
        • Zhang P.
        • Huang C.C.
        • Wang L.
        Genomic alterations of plasma cell-free DNAs in small cell lung cancer and their clinical relevance.
        Lung Cancer. 2018; 120: 113-121
        • Almodovar K.
        • Iams W.T.
        • Meador C.B.
        • et al.
        Longitudinal cell-free DNA analysis in patients with small cell lung cancer reveals dynamic insights into treatment efficacy and disease relapse.
        J Thorac Oncol. 2018; 13: 112-123
        • Fernandez-Cuesta L.
        • Perdomo S.
        • Avogbe P.H.
        • et al.
        Identification of circulating tumor DNA for the early detection of small-cell lung cancer.
        EBioMedicine. 2016; 10: 117-123
        • Aravanis A.M.
        • Lee M.
        • Klausner R.D.
        Next-generation sequencing of circulating tumor DNA for early cancer detection.
        Cell. 2017; 168: 571-574
        • Gormally E.
        • Vineis P.
        • Matullo G.
        • et al.
        TP53 and KRAS2 mutations in plasma DNA of healthy subjects and subsequent cancer occurrence: a prospective study.
        Cancer Res. 2006; 66: 6871-6876
        • Mathios D.
        • Johansen J.S.
        • Cristiano S.
        • et al.
        Detection and characterization of lung cancer using cell-free DNA fragmentomes.
        Nat Commun. 2021; 12: 5060
        • Krushkal J.
        • Silvers T.
        • Reinhold W.C.
        • et al.
        Epigenome-wide DNA methylation analysis of small cell lung cancer cell lines suggests potential chemotherapy targets.
        Clin Epigenet. 2020; 12: 93
        • Li L.
        • Fu K.
        • Zhou W.
        • Snyder M.
        Applying circulating tumor DNA methylation in the diagnosis of lung cancer.
        Precis Clin Med. 2019; 2: 45-56
        • Kneip C.
        • Schmidt B.
        • Seegebarth A.
        • et al.
        SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma.
        J Thorac Oncol. 2011; 6: 1632-1638
        • Nunes S.P.
        • Diniz F.
        • Moreira-Barbosa C.
        • et al.
        Subtyping lung cancer using DNA methylation in liquid biopsies.
        J Clin Med. 2019; 8: 1500
        • Constancio V.
        • Nunes S.P.
        • Moreira-Barbosa C.
        • et al.
        Early detection of the major male cancer types in blood-based liquid biopsies using a DNA methylation panel.
        Clin Epigenet. 2019; 11: 175
        • Rothwell D.G.
        • Chemi F.
        • Pearce S.
        • et al.
        Profiling of the circulating cell-free DNA methylome for detection and subtyping of small cell lung cancers.
        Cancer Res. 2022; 82 (6238–6238)
        • Lennon A.M.
        • Buchanan A.H.
        • Kinde I.
        • et al.
        Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention.
        Science. 2020; 369
        • Cohen J.D.
        • Li L.
        • Wang Y.
        • et al.
        Detection and localization of surgically resectable cancers with a multi-analyte blood test.
        Science. 2018; 359: 926-930
        • Chen X.
        • Gole J.
        • Gore A.
        • et al.
        Non-invasive early detection of cancer four years before conventional diagnosis using a blood test.
        Nat Commun. 2020; 11: 3475
        • Shen S.Y.
        • Singhania R.
        • Fehringer G.
        • et al.
        Sensitive tumour detection and classification using plasma cell-free DNA methylomes.
        Nature. 2018; 563: 579-583
        • Stackpole M.
        • Zeng W.
        • Li S.
        • et al.
        Multi-feature ensemble learning on cell-free dna for accurately detecting and locating cancer.
        Cancer Res. 2021; 81 (24–24)
        • Gao Q.
        • Zhang Y.
        • Xu J.
        • et al.
        Clinical validation of a multicancer detection blood test by circulating cell-free DNA (cfDNA) methylation sequencing: the THUNDER study.
        J Clin Oncol. 2022; 40 (10544–10544)
        • Hackshaw A.
        • Clarke C.A.
        • Hartman A.R.
        New genomic technologies for multi-cancer early detection: rethinking the scope of cancer screening.
        Cancer Cell. 2022; 40: 109-113
        • Yu Y.
        • Zuo J.
        • Tan Q.
        • et al.
        Plasma miR-92a-2 as a biomarker for small cell lung cancer.
        Cancer Biomark. 2017; 18: 319-327
        • Fehlmann T.
        • Kahraman M.
        • Ludwig N.
        • et al.
        Evaluating the use of circulating microRNA profiles for lung cancer detection in symptomatic patients.
        JAMA Oncol. 2020; 6: 714-723
        • Asakura K.
        • Kadota T.
        • Matsuzaki J.
        • et al.
        A miRNA-based diagnostic model predicts resectable lung cancer in humans with high accuracy.
        Commun Biol. 2020; 3: 134
        • Pastorino U.
        • Boeri M.
        • Sestini S.
        • et al.
        Baseline computed tomography screening and blood microRNA predict lung cancer risk and define adequate intervals in the BioMILD trial.
        Ann Oncol. 2022; 33: 395-405
        • Yang B.
        • Li X.
        • Ren T.
        • Yin Y.
        Autoantibodies as diagnostic biomarkers for lung cancer: a systematic review.
        Cell Death Discov. 2019; 5 (126–126)
        • Chapman C.J.
        • Thorpe A.J.
        • Murray A.
        • et al.
        Immunobiomarkers in small cell lung cancer: potential early cancer signals.
        Clin Cancer Res. 2011; 17: 1474-1480
        • Ren S.
        • Zhang S.
        • Jiang T.
        • et al.
        Early detection of lung cancer by using an autoantibody panel in Chinese population.
        Oncoimmunology. 2018; 7 (e1384108)
        • Du Q.
        • Yu R.
        • Wang H.
        • et al.
        Significance of tumor-associated autoantibodies in the early diagnosis of lung cancer.
        Clin Respir J. 2018; 12: 2020-2028
        • Boyle P.
        • Chapman C.J.
        • Holdenrieder S.
        • et al.
        Clinical validation of an autoantibody test for lung cancer.
        Ann Oncol. 2011; 22: 383-389
        • Yang J.
        • Jiao S.
        • Kang J.
        • Li R.
        • Zhang G.
        Application of serum NY-ESO-1 antibody assay for early SCLC diagnosis.
        Int J Clin Exp Pathol. 2015; 8: 14959-14964
        • Jett J.
        • Healey G.
        • Macdonald I.
        • et al.
        P2.13-013 determination of the detection lead time for autoantibody biomarkers in early stage lung cancer using the UKCTOCS cohort.
        J Thorac Oncol. 2017; 12: S2170
        • Sullivan F.M.
        • Mair F.S.
        • Anderson W.
        • et al.
        Earlier diagnosis of lung cancer in a randomised trial of an autoantibody blood test followed by imaging.
        Eur Respir J. 2021; 57: 2000670
        • Mazzone P.J.
        • Wang X.F.
        • Han X.
        • et al.
        Evaluation of a serum lung cancer biomarker panel.
        Biomark Insights. 2018; 13 (1177271917751608)
        • Liu L.
        • Teng J.
        • Zhang L.
        • et al.
        The combination of the tumor markers suggests the histological diagnosis of lung cancer.
        BioMed Res Int. 2017; 2017 (2013989)
        • Xu C.
        • Wang Y.
        • Yuan Q.
        • et al.
        Serum pleiotrophin as a diagnostic and prognostic marker for small cell lung cancer.
        J Cell Mol Med. 2019; 23: 2077-2082
        • Huang L.
        • Zhou J.G.
        • Yao W.X.
        • et al.
        Systematic review and meta-analysis of the efficacy of serum neuron-specific enolase for early small cell lung cancer screening.
        Oncotarget. 2017; 8: 64358-64372
        • Mazzone P.J.
        • Sears C.R.
        • Arenberg D.A.
        • et al.
        Evaluating molecular biomarkers for the early detection of lung cancer: when is a biomarker ready for clinical use? An official American Thoracic Society policy statement.
        Am J Respir Crit Care Med. 2017; 196: e15-e29
        • Takahashi T.
        • Nau M.M.
        • Chiba I.
        • et al.
        p53: a frequent target for genetic abnormalities in lung cancer.
        Science. 1989; 246: 491-494
        • Sos M.L.
        • Dietlein F.
        • Peifer M.
        • et al.
        A framework for identification of actionable cancer genome dependencies in small cell lung cancer.
        Proc Natl Acad Sci U S A. 2012; 109: 17034-17039
        • National Lung Screening Trial Research T
        Lung cancer incidence and mortality with extended follow-up in the national lung screening trial.
        J Thorac Oncol. 2019; 14: 1732-1742
        • Wille M.M.
        • Dirksen A.
        • Ashraf H.
        • et al.
        Results of the randomized Danish lung cancer screening trial with focus on high-risk profiling.
        Am J Respir Crit Care Med. 2016; 193: 542-551
        • Infante M.
        • Cavuto S.
        • Lutman F.R.
        • et al.
        Long-term follow-up results of the DANTE trial, a randomized study of lung cancer screening with spiral computed tomography.
        Am J Respir Crit Care Med. 2015; 191: 1166-1175
        • Pastorino U.
        • Silva M.
        • Sestini S.
        • et al.
        Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: new confirmation of lung cancer screening efficacy.
        Ann Oncol. 2019; 30: 1162-1169
        • Becker N.
        • Motsch E.
        • Trotter A.
        • et al.
        Lung cancer mortality reduction by LDCT screening—results from the randomized German LUSI trial.
        Int J Cancer. 2020; 146: 1503-1513
        • Gohagan J.K.
        • Marcus P.M.
        • Fagerstrom R.M.
        • et al.
        Final results of the Lung Screening Study, a randomized feasibility study of spiral CT versus chest X-ray screening for lung cancer.
        Lung Cancer. 2005; 47: 9-15
        • Doroudi M.
        • Pinsky P.F.
        • Marcus P.M.
        Lung cancer mortality in the lung screening study feasibility trial.
        JNCI Cancer Spectr. 2018; 2 (pky042)