Advertisement

Predictive Biomarkers for Immunotherapy in Lung Cancer: Perspective From the International Association for the Study of Lung Cancer Pathology Committee

Published:September 28, 2022DOI:https://doi.org/10.1016/j.jtho.2022.09.109

      Abstract

      Immunotherapy including immune checkpoint inhibitors (ICIs) has become the backbone of treatment for most lung cancers with advanced or metastatic disease. In addition, they have increasingly been used for early stage tumors in neoadjuvant and adjuvant settings. Unfortunately, however, only a subset of patients experiences meaningful response to ICIs. Although programmed death-ligand 1 (PD-L1) protein expression by immunohistochemistry (IHC) has played a role as the principal predictive biomarker for immunotherapy, its performance may not be optimal, and it suffers multiple practical issues with different companion diagnostic assays approved. Similarly, tumor mutational burden (TMB) has multiple technical issues as a predictive biomarker for ICIs. Now, ongoing research on tumor- and host immune-specific factors has identified immunotherapy biomarkers that may provide better response and prognosis prediction, in particular in a multimodal approach. This review by the International Association for the Study of Lung Cancer Pathology Committee provides an overview of various immunotherapy biomarkers, including updated data on PD-L1 IHC and TMB, and assessments of neoantigens, genetic and epigenetic signatures, immune microenvironment by IHC and transcriptomics, and microbiome and pathologic response to neoadjuvant immunotherapies. The aim of this review is to underline the efficacy of new individual or combined predictive biomarkers beyond PD-L1 IHC and TMB.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Thoracic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sung H.
        • Ferlay J.
        • Siegel R.L.
        • et al.
        Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
        CA Cancer J Clin. 2021; 71: 209-249
        • Reck M.
        • Remon J.
        • Hellmann M.D.
        First-line immunotherapy for non-small-cell lung cancer.
        J Clin Oncol. 2022; 40: 586-597
        • Zhang L.
        • Lin W.
        • Tan F.
        • et al.
        Sintilimab for the treatment of non-small cell lung cancer.
        Biomark Res. 2022; 10: 23
        • Lantuejoul S.
        • Sound-Tsao M.
        • Cooper W.A.
        • et al.
        PD-L1 testing for lung cancer in 2019: perspective from the IASLC pathology committee.
        J Thorac Oncol. 2020; 15: 499-519
        • Sholl L.M.
        • Hirsch F.R.
        • Hwang D.
        • et al.
        The promises and challenges of tumor mutation burden as an immunotherapy biomarker: a perspective from the International Association for the Study of Lung Cancer Pathology Committee.
        J Thorac Oncol. 2020; 15: 1409-1424
        • Marcus L.
        • Fashoyin-Aje L.A.
        • Donoghue M.
        • et al.
        FDA approval summary: Pembrolizumab for the treatment of tumor mutational burden-high solid tumors.
        Clin Cancer Res. 2021; 27: 4685-4689
        • Travis W.D.
        • Dacic S.
        • Wistuba I.
        • et al.
        IASLC multidisciplinary recommendations for pathologic assessment of lung cancer resection specimens after neoadjuvant therapy.
        J Thorac Oncol. 2020; 15: 709-740
        • Lee J.S.
        • Ruppin E.
        Multiomics prediction of response rates to therapies to inhibit programmed cell death 1 and programmed cell death 1 ligand 1.
        JAMA Oncol. 2019; 5: 1614-1618
        • Lu S.
        • Stein J.E.
        • Rimm D.L.
        • et al.
        Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis.
        JAMA Oncol. 2019; 5: 1195-1204
        • Doroshow D.B.
        • Bhalla S.
        • Beasley M.B.
        • et al.
        PD-L1 as a biomarker of response to immune-checkpoint inhibitors.
        Nat Rev Clin Oncol. 2021; 18: 345-362
        • Hirsch F.R.
        • McElhinny A.
        • Stanforth D.
        • et al.
        PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project.
        J Thorac Oncol. 2017; 12: 208-222
        • Tsao M.S.
        • Kerr K.M.
        • Kockx M.
        • et al.
        PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project.
        J Thorac Oncol. 2018; 13: 1302-1311
        • Tsao M.S.
        • Kerr K.M.
        • Dacic S.
        • Yatabe Y.
        • Hirsch F.R.
        IASLC Atlas of PD-L1 Immunohistochemistry Testing in Lung Cancer.
        Editorial Rx Press, Colorado Springs, CO2017
      1. Food and Drug Administration. FDA approves cemiplimab-rwlc for non-small cell lung cancer with high PD-L1 expression. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-cemiplimab-rwlc-non-small-cell-lung-cancer-high-pd-l1-expression. Accessed February 22, 2021.

        • Paz-Ares L.G.
        • Ramalingam S.S.
        • Ciuleanu T.E.
        • et al.
        First-line nivolumab plus ipilimumab in advanced NSCLC: 4-year outcomes from the randomized, open-label, phase 3 CheckMate 227 part 1 Trial.
        J Thorac Oncol. 2022; 17: 289-308
        • Sezer A.
        • Kilickap S.
        • Gümüş M.
        • et al.
        Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: a multicentre, open-label, global, phase 3, randomised, controlled trial.
        Lancet. 2021; 397: 592-604
        • Herbst R.S.
        • Giaccone G.
        • de Marinis F.
        • et al.
        Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC.
        N Engl J Med. 2020; 383: 1328-1339
        • Aguilar E.J.
        • Ricciuti B.
        • Gainor J.F.
        • et al.
        Outcomes to first-line pembrolizumab in patients with non-small-cell lung cancer and very high PD-L1 expression.
        Ann Oncol. 2019; 30: 1653-1659
        • Doroshow D.B.
        • Wei W.
        • Gupta S.
        • et al.
        Programmed death-ligand 1 tumor proportion score and overall survival from first-line pembrolizumab in patients with nonsquamous versus squamous NSCLC.
        J Thorac Oncol. 2021; 16: 2139-2143
        • Yu H.
        • Batenchuk C.
        • Badzio A.
        • et al.
        PD-L1 expression by two complementary diagnostic assays and mRNA in situ hybridization in small cell lung cancer.
        J Thorac Oncol. 2017; 12: 110-120
        • Ready N.
        • Farago A.F.
        • de Braud F.
        • et al.
        Third-line nivolumab monotherapy in recurrent SCLC: CheckMate 032.
        J Thorac Oncol. 2019; 14: 237-244
        • Hirsch F.R.
        • Walker J.
        • Higgs B.W.
        • Cooper Z.A.
        • Raja R.G.
        Wistuba II. The Combiome hypothesis: selecting optimal treatment for cancer patients.
        Clin Lung Cancer. 2022; 23: 1-13
        • Gandara D.R.
        • Paul S.M.
        • Kowanetz M.
        • et al.
        Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab.
        Nat Med. 2018; 24: 1441-1448
        • Marabelle A.
        • Fakih M.
        • Lopez J.
        • et al.
        Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study.
        Lancet Oncol. 2020; 21: 1353-1365
        • Hellmann M.D.
        • Callahan M.K.
        • Awad M.M.
        • et al.
        Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer.
        Cancer Cell. 2018; 33 (e4): 853-861
        • Horn L.
        • Mansfield A.S.
        • Szczesna A.
        • et al.
        First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer.
        N Engl J Med. 2018; 379: 2220-2229
        • Hellmann M.D.
        • Paz-Ares L.
        • Bernabe Caro R.
        • et al.
        Nivolumab plus ipilimumab in advanced non-small-cell lung cancer.
        N Engl J Med. 2019; 381: 2020-2031
        • Hellmann M.D.
        • Ciuleanu T.E.
        • Pluzanski A.
        • et al.
        Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden.
        N Engl J Med. 2018; 378: 2093-2104
        • Rizvi N.A.
        • Cho B.C.
        • Reinmuth N.
        • et al.
        Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic non-small cell lung cancer: the MYSTIC Phase 3 randomized clinical trial.
        JAMA Oncol. 2020; 6: 661-674
      2. Food and Drug Administration. FDA approves nivolumab plus ipilimumab and chemotherapy for first-line treatment of metastatic NSCLC. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-nivolumab-plus-ipilimumab-and-chemotherapy-first-line-treatment-metastatic-nsclc. Accessed May 26, 2020

        • Leighl N.B.
        • Laurie S.A.
        • Goss G.D.
        • et al.
        CCTG BR34: A randomized Phase 2 trial of durvalumab and tremelimumab with or without platinum-based chemotherapy in patients with metastatic NSCLC.
        J Thorac Oncol. 2022; 17: 434-445
        • Wang J.
        • Lu S.
        • Hu C.
        • et al.
        Updated analysis of tislelizumab plus chemotherapy vs chemotherapy alone as first-line treatment of advanced squamous non-small cell lung cancer (SQ NSCLC).
        Annals Oncol. 2020; 31: S754-S840
        • Paz-Ares L.
        • Ciuleanu T.-E.
        • Cobo M.
        • et al.
        First-line nivolumab (NIVO) + ipilimumab (IPI) + 2 cycles chemotherapy (chemo) vs 4 cycles chemo in advanced non-small cell lung cancer (aNSCLC): association of blood and tissue tumor mutational burden (TMB) with efficacy in CheckMate 9LA.
        J Thorac Oncol. 2021; 16: S750-S751
        • Buchhalter I.
        • Rempel E.
        • Endris V.
        • et al.
        Size matters: dissecting key parameters for panel-based tumor mutational burden analysis.
        Int J Cancer. 2019; 144: 848-858
        • Chalmers Z.R.
        • Connelly C.F.
        • Fabrizio D.
        • et al.
        Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden.
        Genome Med. 2017; 9: 34
        • Endris V.
        • Buchhalter I.
        • Allgäuer M.
        • et al.
        Measurement of tumor mutational burden (TMB) in routine molecular diagnostics: in silico and real-life analysis of three larger gene panels.
        Int J Cancer. 2019; 144: 2303-2312
        • Ramos-Paradas J.
        • Hernández-Prieto S.
        • Lora D.
        • et al.
        Tumor mutational burden assessment in non-small-cell lung cancer samples: results from the TMB2 harmonization project comparing three NGS panels.
        J Immunother Cancer. 2021; 9e001904
        • Wei B.
        • Kang J.
        • Kibukawa M.
        • et al.
        Evaluation of the TruSight Oncology 500 assay for routine clinical testing of tumor mutational burden and clinical utility for predicting response to pembrolizumab.
        J Mol Diagn. 2022; 24: 600-608
        • Merino D.M.
        • McShane L.M.
        • Fabrizio D.
        • et al.
        Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the Friends of Cancer Research TMB Harmonization Project.
        J Immunother Cancer. 2020; 8e000147
        • Ye L.
        • Creaney J.
        • Redwood A.
        • Robinson B.
        The current lung cancer neoantigen landscape and implications for therapy.
        J Thorac Oncol. 2021; 16: 922-932
        • Anagnostou V.
        • Smith K.N.
        • Forde P.M.
        • et al.
        Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer.
        Cancer Discov. 2017; 7: 264-276
        • Fehlings M.
        • Jhunjhunwala S.
        • Kowanetz M.
        • et al.
        Late-differentiated effector neoantigen-specific CD8+ T cells are enriched in peripheral blood of non-small cell lung carcinoma patients responding to atezolizumab treatment.
        J Immunother Cancer. 2019; 7: 249
        • Forde P.M.
        • Chaft J.E.
        • Smith K.N.
        • et al.
        Neoadjuvant PD-1 blockade in resectable lung cancer.
        N Engl J Med. 2018; 378: 1976-1986
        • Gettinger S.N.
        • Choi J.
        • Mani N.
        • et al.
        A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers.
        Nat Commun. 2018; 9: 3196
        • Rizvi N.A.
        • Hellmann M.D.
        • Snyder A.
        • et al.
        Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer.
        Science. 2015; 348: 124-128
        • McGranahan N.
        • Furness A.J.
        • Rosenthal R.
        • et al.
        Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade.
        Science. 2016; 351: 1463-1469
        • Montesion M.
        • Murugesan K.
        • Jin D.X.
        • et al.
        Somatic HLA Class I loss is a widespread mechanism of immune evasion which refines the use of tumor mutational burden as a biomarker of checkpoint inhibitor response.
        Cancer Discov. 2021; 11: 282-292
        • De Mattos-Arruda L.
        • Vazquez M.
        • Finotello F.
        • et al.
        Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the ESMO Precision Medicine Working Group.
        Ann Oncol. 2020; 31: 978-990
        • Chen Y.P.
        • Zhang Y.
        • Lv J.W.
        • et al.
        Genomic analysis of tumor microenvironment immune types across 14 solid cancer types: immunotherapeutic implications.
        Theranostics. 2017; 7: 3585-3594
        • WHO Classification of Tumours Editorial Board
        WHO Classification oF Tumours.
        5th ed. Thoracic Tumours. 5. IARC Publications, Lyon, France2021
        • Gainor J.F.
        • Shaw A.T.
        • Sequist L.V.
        • et al.
        EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: A retrospective analysis.
        Clin Cancer Res. 2016; 22: 4585-4593
        • Kauffmann-Guerrero D.
        • Tufman A.
        • Kahnert K.
        • et al.
        Response to checkpoint inhibition in non-small cell lung cancer with molecular driver alterations.
        Oncol Res Treat. 2020; 43: 289-298
        • Ricciuti B.
        • Arbour K.C.
        • Lin J.J.
        • et al.
        Diminished efficacy of programmed death-(ligand)1 inhibition in STK11- and KEAP1-mutant lung adenocarcinoma is affected by KRAS mutation status.
        J Thorac Oncol. 2022; 17: 399-410
        • Skoulidis F.
        • Goldberg M.E.
        • Greenawalt D.M.
        • et al.
        STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma.
        Cancer Discov. 2018; 8: 822-835
        • Zhao Y.
        • Cao Y.
        • Chen Y.
        • et al.
        B2M gene expression shapes the immune landscape of lung adenocarcinoma and determines the response to immunotherapy.
        Immunology. 2021; 164: 507-523
        • Duruisseaux M.
        • Martínez-Cardús A.
        • Calleja-Cervantes M.E.
        • et al.
        Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: a multicentre, retrospective analysis.
        Lancet Respir Med. 2018; 6: 771-781
        • Chen D.S.
        • Mellman I.
        Oncology meets immunology: the cancer-immunity cycle.
        Immunity. 2013; 39: 1-10
        • Doroshow D.B.
        • Sanmamed M.F.
        • Hastings K.
        • et al.
        Immunotherapy in non-small cell lung cancer: facts and hopes.
        Clin Cancer Res. 2019; 25: 4592-4602
        • Karasaki T.
        • Nagayama K.
        • Kuwano H.
        • et al.
        An immunogram for the cancer-immunity cycle: towards personalized immunotherapy of lung cancer.
        J Thorac Oncol. 2017; 12: 791-803
        • Sanmamed M.F.
        • Eguren-Santamaria I.
        • Schalper K.A.
        Overview of lung cancer immunotherapy.
        Cancer J. 2020; 26: 473-484
        • Sholl L.M.
        Biomarkers of response to checkpoint inhibitors beyond PD-L1 in lung cancer.
        Mod Pathol. 2022; 35: 66-74
        • Shepherd D.J.
        • Tabb E.S.
        • Kunitoki K.
        • et al.
        Lymphocyte-activation gene 3 in non-small-cell lung carcinomas: correlations with clinicopathologic features and prognostic significance.
        Mod Pathol. 2022; 35: 615-624
        • Shirasawa M.
        • Yoshida T.
        • Imabayashi T.
        • et al.
        Baseline PD-L1 expression and tumour-infiltrated lymphocyte status predict the efficacy of durvalumab consolidation therapy after chemoradiotherapy in unresectable locally advanced patients with non-small-cell lung cancer.
        Eur J Cancer. 2022; 162: 1-10
        • Shirasawa M.
        • Yoshida T.
        • Shimoda Y.
        • et al.
        Differential immune-related microenvironment determines programmed cell death Protein-1/Programmed death-ligand 1 blockade efficacy in patients with advanced NSCLC.
        J Thorac Oncol. 2021; 16: 2078-2090
        • Yeong J.
        • Suteja L.
        • Simoni Y.
        • et al.
        Intratumoral CD39+CD8+ T cells predict response to programmed cell death Protein-1 or programmed death Ligand-1 blockade in patients with NSCLC.
        J Thorac Oncol. 2021; 16: 1349-1358
        • Thommen D.S.
        • Koelzer V.H.
        • Herzig P.
        • et al.
        A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade.
        Nat Med. 2018; 24: 994-1004
        • Kumagai S.
        • Togashi Y.
        • Kamada T.
        • et al.
        The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies.
        Nat Immunol. 2020; 21: 1346-1358
        • Datar I.
        • Sanmamed M.F.
        • Wang J.
        • et al.
        Expression analysis and significance of PD-1, LAG-3, and TIM-3 in human non-small cell lung cancer using spatially resolved and multiparametric single-cell analysis.
        Clin Cancer Res. 2019; 25: 4663-4673
        • Eiva M.A.
        • Omran D.K.
        • Chacon J.A.
        • Powell Jr., D.J.
        Systematic analysis of CD39, CD103, CD137, and PD-1 as biomarkers for naturally occurring tumor antigen-specific TILs.
        Eur J Immunol. 2022; 52: 96-108
        • Gide T.N.
        • Quek C.
        • Menzies A.M.
        • et al.
        Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy.
        Cancer Cell. 2019; 35: 238-255.e6
        • Schalper K.A.
        • Carvajal-Hausdorf D.
        • McLaughlin J.
        • et al.
        Differential expression and significance of PD-L1, IDO-1, and B7-H4 in human lung cancer.
        Clin Cancer Res. 2017; 23: 370-378
        • Zhang M.L.
        • Kem M.
        • Mooradian M.J.
        • et al.
        Differential expression of PD-L1 and IDO1 in association with the immune microenvironment in resected lung adenocarcinomas.
        Mod Pathol. 2019; 32: 511-523
        • Wang J.
        • Sanmamed M.F.
        • Datar I.
        • et al.
        Fibrinogen-like Protein 1 is a major immune inhibitory ligand of LAG-3.
        Cell. 2019; 176 (e12): 334-347
        • Hou A.
        • Hou K.
        • Huang Q.
        • Lei Y.
        • Chen W.
        Targeting myeloid-derived suppressor cell, a promising strategy to overcome resistance to immune checkpoint inhibitors.
        Front Immunol. 2020; 11: 783
        • Zhuo M.
        • Chen H.
        • Zhang T.
        • et al.
        The potential predictive value of circulating immune cell ratio and tumor marker in atezolizumab treated advanced non-small cell lung cancer patients.
        Cancer Biomark. 2018; 22: 467-476
        • Kang D.H.
        • Chung C.
        • Sun P.
        • et al.
        Circulating regulatory T cells predict efficacy and atypical responses in lung cancer patients treated with PD-1/PD-L1 inhibitors.
        Cancer Immunol Immunother. 2022; 71: 579-588
        • Rogado J.
        • Pozo F.
        • Troule K.
        • et al.
        Peripheral blood mononuclear cells predict therapeutic efficacy of immunotherapy in NSCLC.
        Cancers (Basel). 2022; 14: 2898
        • Wang Q.
        • He Y.
        • Li W.
        • et al.
        Soluble immune checkpoint-related proteins in blood are associated with invasion and progression in non-small cell lung cancer.
        Front Immunol. 2022; 13887916
        • Mildner F.
        • Sopper S.
        • Amann A.
        • et al.
        Systematic review: soluble immunological biomarkers in advanced non-small-cell lung cancer (NSCLC).
        Crit Rev Oncol Hematol. 2020; 153102948
        • Mazzaschi G.
        • Minari R.
        • Zecca A.
        • et al.
        Soluble PD-L1 and Circulating CD8+PD-1+ and NK cells enclose a prognostic and predictive immune effector score in immunotherapy treated NSCLC patients.
        Lung Cancer. 2020; 148: 1-11
        • Honrubia-Peris B.
        • Garde-Noguera J.
        • Garcia- Sánchez J.
        • Piera-Molons N.
        • Llombart-Cussac A.
        • Fernández-Murga M.L.
        Soluble biomarkers with prognostic and predictive value in advanced non-small cell lung cancer treated with immunotherapy.
        Cancers (Basel). 2021; 13: 4280
        • Ayers M.
        • Lunceford J.
        • Nebozhyn M.
        • et al.
        IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade.
        J Clin Invest. 2017; 127: 2930-2940
        • Ott P.A.
        • Bang Y.J.
        • Piha-Paul S.A.
        • et al.
        T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028.
        J Clin Oncol. 2019; 37: 318-327
        • Trujillo J.A.
        • Sweis R.F.
        • Bao R.
        • Luke J.J.
        T cell-Inflamed versus non-T cell-Inflamed Tumors: A conceptual framework for cancer immunotherapy drug development and combination therapy selection.
        Cancer Immunol Res. 2018; 6: 990-1000
        • Fehrenbacher L.
        • Spira A.
        • Ballinger M.
        • et al.
        Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial.
        Lancet. 2016; 387: 1837-1846
        • Higgs B.W.
        • Morehouse C.A.
        • Streicher K.
        • et al.
        Interferon gamma messenger RNA signature in tumor biopsies predicts outcomes in patients with non-small cell lung carcinoma or urothelial cancer treated with durvalumab.
        Clin Cancer Res. 2018; 24: 3857-3866
        • Damotte D.
        • Warren S.
        • Arrondeau J.
        • et al.
        The tumor inflammation signature (TIS) is associated with anti-PD-1 treatment benefit in the CERTIM pan-cancer cohort.
        J Transl Med. 2019; 17: 357
        • Hwang S.
        • Kwon A.Y.
        • Jeong J.Y.
        • et al.
        Immune gene signatures for predicting durable clinical benefit of anti-PD-1 immunotherapy in patients with non-small cell lung cancer.
        Sci Rep. 2020; 10: 643
        • Ranganath H.
        • Jain A.L.
        • Smith J.R.
        • et al.
        Association of a novel 27-gene immuno-oncology assay with efficacy of immune checkpoint inhibitors in advanced non-small cell lung cancer.
        BMC Cancer. 2022; 22: 407
        • Leng Y.
        • Dang S.
        • Yin F.
        • et al.
        GDPLichi: a DNA damage repair-related gene classifier for predicting lung adenocarcinoma immune checkpoint inhibitors response.
        Front Oncol. 2021; 11733533
        • Jiang P.
        • Gu S.
        • Pan D.
        • et al.
        Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.
        Nat Med. 2018; 24: 1550-1558
        • Jang H.J.
        • Lee H.S.
        • Ramos D.
        • et al.
        Transcriptome-based molecular subtyping of non-small cell lung cancer may predict response to immune checkpoint inhibitors.
        J Thorac Cardiovasc Surg. 2020; 159: 1598-1610.e3
        • Budczies J.
        • Kirchner M.
        • Kluck K.
        • et al.
        A gene expression signature associated with B cells predicts benefit from immune checkpoint blockade in lung adenocarcinoma.
        Oncoimmunology. 2021; 101860586
        • Cabel L.
        • Proudhon C.
        • Romano E.
        • et al.
        Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy.
        Nat Rev Clin Oncol. 2018; 15: 639-650
        • Goldberg S.B.
        • Narayan A.
        • Kole A.J.
        • et al.
        Early assessment of lung cancer immunotherapy response via circulating tumor DNA.
        Clin Cancer Res. 2018; 24: 1872-1880
        • Nabet B.Y.
        • Esfahani M.S.
        • Moding E.J.
        • et al.
        Noninvasive early identification of therapeutic benefit from immune checkpoint inhibition.
        Cell. 2020; 183 (e13): 363-376
        • Zhang Q.
        • Luo J.
        • Wu S.
        • et al.
        Prognostic and predictive impact of circulating tumor DNA in patients with advanced cancers treated with immune checkpoint blockade.
        Cancer Discov. 2020; 10: 1842-1853
        • Barefoot M.E.
        • Loyfer N.
        • Kiliti A.J.
        • McDeed 4th, A.P.
        • Kaplan T.
        • Wellstein A.
        Detection of cell types contributing to cancer from circulating, cell-free methylated DNA.
        Front Genet. 2021; 12671057
        • Cristiano S.
        • Leal A.
        • Phallen J.
        • et al.
        Genome-wide cell-free DNA fragmentation in patients with cancer.
        Nature. 2019; 570: 385-389
        • Jiang P.
        • Sun K.
        • Peng W.
        • et al.
        Plasma DNA end-motif profiling as a Fragmentomic marker in cancer, pregnancy, and transplantation.
        Cancer Discov. 2020; 10: 664-673
        • Keller L.
        • Belloum Y.
        • Wikman H.
        • Pantel K.
        Clinical relevance of blood-based ctDNA analysis: mutation detection and beyond.
        Br J Cancer. 2021; 124: 345-358
        • Lianidou E.
        Detection and relevance of epigenetic markers on ctDNA: recent advances and future outlook.
        Mol Oncol. 2021; 15: 1683-1700
        • Taube J.M.
        • Akturk G.
        • Angelo M.
        • et al.
        The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation.
        J Immunother Cancer. 2020; 8e000155
        • Gerdes M.J.
        • Sevinsky C.J.
        • Sood A.
        • et al.
        Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue.
        Proc Natl Acad Sci U S A. 2013; 110: 11982-11987
        • Lin J.R.
        • Izar B.
        • Wang S.
        • et al.
        Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes.
        ELife. 2018; 7e31657
        • Goltsev Y.
        • Samusik N.
        • Kennedy-Darling J.
        • et al.
        Deep profiling of mouse splenic architecture with CODEX multiplexed imaging.
        Cell. 2018; 174 (e15): 968-981
        • Giesen C.
        • Wang H.A.
        • Schapiro D.
        • et al.
        Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry.
        Nat Methods. 2014; 11: 417-422
        • Angelo M.
        • Bendall S.C.
        • Finck R.
        • et al.
        Multiplexed ion beam imaging of human breast tumors.
        Nat Med. 2014; 20: 436-442
        • Amaria R.N.
        • Reddy S.M.
        • Tawbi H.A.
        • et al.
        Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma.
        Nat Med. 2018; 24: 1649-1654
        • Ståhl P.L.
        • Salmén F.
        • Vickovic S.
        • et al.
        Visualization and analysis of gene expression in tissue sections by spatial transcriptomics.
        Science. 2016; 353: 78-82
        • Rodriques S.G.
        • Stickels R.R.
        • Goeva A.
        • et al.
        Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution.
        Science. 2019; 363: 1463-1467
        • Liu Y.
        • Yang M.
        • Deng Y.
        • et al.
        High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue.
        Cell. 2020; 183 (e18): 1665-1681
        • Cho C.S.
        • Xi J.
        • Si Y.
        • et al.
        Microscopic examination of spatial transcriptome using Seq-Scope.
        Cell. 2021; 184 (e22): 3559-3572
        • Zugazagoitia J.
        • Gupta S.
        • Liu Y.
        • et al.
        Biomarkers associated with beneficial PD-1 checkpoint blockade in non-small cell lung cancer (NSCLC) identified using high-plex digital spatial profiling.
        Clin Cancer Res. 2020; 26: 4360-4368
        • Lin Y.E.
        • Shnitzer T.
        • Talmon R.
        • et al.
        Graph of graphs analysis for multiplexed data with application to imaging mass cytometry.
        PLoS Comput Biol. 2021; 17e1008741
        • Sanmamed M.F.
        • Nie X.
        • Desai S.S.
        • et al.
        A burned-out CD8+ T-cell subset expands in the tumor microenvironment and curbs cancer immunotherapy.
        Cancer Discov. 2021; 11: 1700-1715
        • Cho Y.H.
        • Choi M.G.
        • Kim D.H.
        • et al.
        Natural killer cells as a potential biomarker for predicting immunotherapy efficacy in patients with non-small cell lung cancer.
        Target Oncol. 2020; 15: 241-247
        • Adil A.
        • Kumar V.
        • Jan A.T.
        • Asger M.
        Single-cell transcriptomics: current methods and challenges in data acquisition and analysis.
        Front Neurosci. 2021; 15591122
        • Caushi J.X.
        • Zhang J.
        • Ji Z.
        • et al.
        Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers.
        Nature. 2021; 596: 126-132
        • Park S.
        • Ock C.Y.
        • Kim H.
        • et al.
        Artificial intelligence-powered spatial analysis of tumor-infiltrating lymphocytes as complementary biomarker for immune checkpoint inhibition in non-small-cell lung cancer.
        J Clin Oncol. 2022; 40: 1916-1928
        • Ocáriz-Díez M.
        • Cruellas M.
        • Gascón M.
        • et al.
        Microbiota and lung cancer. Opportunities and challenges for improving immunotherapy efficacy.
        Front Oncol. 2020; 10568939
        • Zheng D.
        • Liwinski T.
        • Elinav E.
        Interaction between microbiota and immunity in health and disease.
        Cell Res. 2020; 30: 492-506
        • Sivan A.
        • Corrales L.
        • Hubert N.
        • et al.
        Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy.
        Science. 2015; 350: 1084-1089
        • Vétizou M.
        • Pitt J.M.
        • Daillère R.
        • et al.
        Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.
        Science. 2015; 350: 1079-1084
        • Gopalakrishnan V.
        • Spencer C.N.
        • Nezi L.
        • et al.
        Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients.
        Science. 2018; 359: 97-103
        • Matson V.
        • Fessler J.
        • Bao R.
        • et al.
        The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients.
        Science. 2018; 359: 104-108
        • Routy B.
        • Le Chatelier E.
        • Derosa L.
        • et al.
        Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.
        Science. 2018; 359: 91-97
        • Baruch E.N.
        • Youngster I.
        • Ben-Betzalel G.
        • et al.
        Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients.
        Science. 2021; 371: 602-609
        • Davar D.
        • Dzutsev A.K.
        • McCulloch J.A.
        • et al.
        Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients.
        Science. 2021; 371: 595-602
        • McLean L.
        • Leal J.L.
        • Solomon B.J.
        • John T.
        Immunotherapy in oncogene addicted non-small cell lung cancer.
        Transl Lung Cancer Res. 2021; 10: 2736-2751
        • Jin C.
        • Lagoudas G.K.
        • Zhao C.
        • et al.
        Commensal microbiota promote lung cancer development via γδ T cells.
        Cell. 2019; 176 (e16): 998-1013
        • Tsay J.J.
        • Wu B.G.
        • Sulaiman I.
        • et al.
        Lower airway dysbiosis affects lung cancer progression.
        Cancer Discov. 2021; 11: 293-307
        • Beck J.M.
        • Young V.B.
        • Huffnagle G.B.
        The microbiome of the lung.
        Transl Res. 2012; 160: 258-266
        • Dickson R.P.
        The lung microbiome and ARDS. It is time to broaden the model.
        Am J Respir Crit Care Med. 2018; 197: 549-551
        • Le Noci V.
        • Guglielmetti S.
        • Arioli S.
        • et al.
        Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases.
        Cell Rep. 2018; 24: 3528-3538
        • Aykut B.
        • Pushalkar S.
        • Chen R.
        • et al.
        The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL.
        Nature. 2019; 574: 264-267
        • Hannigan G.D.
        • Duhaime M.B.
        • Ruffin 4th, M.T.
        • Koumpouras C.C.
        • Schloss P.D.
        Diagnostic potential and interactive dynamics of the colorectal cancer virome.
        mBio. 2018; 9 (e02248-18)
        • Junker K.
        • Langner K.
        • Klinke F.
        • Bosse U.
        • Thomas M.
        Grading of tumor regression in non-small cell lung cancer : morphology and prognosis.
        Chest. 2001; 120: 1584-1591
        • Pataer A.
        • Kalhor N.
        • Correa A.M.
        • et al.
        Histopathologic response criteria predict survival of patients with resected lung cancer after neoadjuvant chemotherapy.
        J Thorac Oncol. 2012; 7: 825-832
        • Qu Y.
        • Emoto K.
        • Eguchi T.
        • et al.
        Pathologic assessment after neoadjuvant chemotherapy for NSCLC: importance and implications of distinguishing adenocarcinoma from squamous cell carcinoma.
        J Thorac Oncol. 2019; 14: 482-493
        • Weissferdt A.
        • Pataer A.
        • Vaporciyan A.A.
        • et al.
        Agreement on major pathological response in NSCLC patients receiving neoadjuvant chemotherapy.
        Clin Lung Cancer. 2020; 21: 341-348
        • Gilligan D.
        • Nicolson M.
        • Smith I.
        • et al.
        Preoperative chemotherapy in patients with resectable non-small cell lung cancer: results of the MRC LU22/NVALT 2/EORTC 08012 multicentre randomised trial and update of systematic review.
        Lancet. 2007; 369: 1929-1937
        • Pisters K.M.
        • Kris M.G.
        • Gralla R.J.
        • Zaman M.B.
        • Heelan R.T.
        • Martini N.
        Pathologic complete response in advanced non-small-cell lung cancer following preoperative chemotherapy: implications for the design of future non-small-cell lung cancer combined modality trials.
        J Clin Oncol. 1993; 11: 1757-1762
        • Forde P.M.
        • Spicer J.
        • Lu S.
        • et al.
        Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer.
        N Engl J Med. 2022; 386: 1973-1985
        • Weissferdt A.
        • Pataer A.
        • Swisher S.G.
        • et al.
        Controversies and challenges in the pathologic examination of lung resection specimens after neoadjuvant treatment.
        Lung Cancer. 2021; 154: 76-83
        • Saqi A.
        • Leslie K.O.
        • Moreira A.L.
        • et al.
        Assessing pathologic response in resected lung cancers: current standards, proposal for a novel pathologic response calculator tool, and challenges in practice.
        JTO Clin Res Rep. 2022; 3100310
        • Stein J.E.
        • Lipson E.J.
        • Cottrell T.R.
        • et al.
        Pan-tumor pathologic scoring of response to PD-(L)1 blockade.
        Clin Cancer Res. 2020; 26: 545-551
        • Cottrell T.R.
        • Thompson E.D.
        • Forde P.M.
        • et al.
        Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPRC).
        Ann Oncol. 2018; 29: 1853-1860
        • Dacic S.
        • Travis W.T.
        • Giltnane J.M.
        • et al.
        Artificial intelligence (AI)–powered pathologic response (PathR) assessment of resection specimens after neoadjuvant atezolizumab in patients with non-small cell lung cancer: results from the LCMC3 study.
        J Clin Oncol. 2021; 39 (106–106)
        • Blaauwgeers J.L.
        • Kappers I.
        • Klomp H.M.
        • et al.
        Complete pathological response is predictive for clinical outcome after tri-modality therapy for carcinomas of the superior pulmonary sulcus.
        Virchows Arch. 2013; 462: 547-556
        • Junker K.
        • Thomas M.
        • Schulmann K.
        • Klinke F.
        • Bosse U.
        • Müller K.M.
        Tumour regression in non-small-cell lung cancer following neoadjuvant therapy. Histological assessment.
        J Cancer Res Clin Oncol. 1997; 123: 469-477
        • Liu X.
        • Sun W.
        • Wu J.
        • et al.
        Major pathologic response assessment and clinical significance of metastatic lymph nodes after neoadjuvant therapy for non-small cell lung cancer.
        Mod Pathol. 2021; 34: 1990-1998
        • Zens P.
        • Bello C.
        • Scherz A.
        • et al.
        A prognostic score for non-small cell lung cancer resected after neoadjuvant therapy in comparison with the tumor-node-metastases classification and major pathological response.
        Mod Pathol. 2021; 34: 1333-1344
        • Cascone T.
        • William Jr., W.N.
        • Weissferdt A.
        • et al.
        Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial.
        Nat Med. 2021; 27: 504-514
        • Corsini E.M.
        • Weissferdt A.
        • Pataer A.
        • et al.
        Pathological nodal disease defines survival outcomes in patients with lung cancer with tumour major pathological response following neoadjuvant chemotherapy.
        Eur J Cardio Thorac Surg. 2021; 59: 100-108
        • Pataer A.
        • Weissferdt A.
        • Vaporciyan A.A.
        • et al.
        Evaluation of pathologic response in lymph nodes of patients with lung cancer receiving neoadjuvant chemotherapy.
        J Thorac Oncol. 2021; 16: 1289-1297
        • Provencio M.
        • Nadal E.
        • Insa A.
        • et al.
        Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (NADIM): an open-label, multicentre, single-arm, phase 2 trial.
        Lancet Oncol. 2020; 21: 1413-1422
        • Shu C.A.
        • Gainor J.F.
        • Awad M.M.
        • et al.
        Neoadjuvant atezolizumab and chemotherapy in patients with resectable non-small-cell lung cancer: an open-label, multicentre, single-arm, phase 2 trial.
        Lancet Oncol. 2020; 21: 786-795
        • Gao S.
        • Li N.
        • Gao S.
        • et al.
        Neoadjuvant PD-1 inhibitor (Sintilimab) in NSCLC.
        J Thorac Oncol. 2020; 15: 816-826
        • Carbone D.P.
        • Reck M.
        • Paz-Ares L.
        • et al.
        First-line nivolumab in Stage IV or recurrent non-small-cell lung cancer.
        N Engl J Med. 2017; 376: 2415-2426
        • Herbst R.S.
        • Lopes G.
        • Kowalski D.M.
        • et al.
        Association between tissue TMB (tTMB) and clinical outcomes with pembrolizumab monotherapy (pembro) in PD-L1-positive advanced NSCLC in the KEYNOTE-010 and −042 trials.
        Ann Oncol. 2019; 30: v916-v917
        • Kowanetz M.
        • Zou W.
        • Shames D.
        • et al.
        OA20.01 Tumor mutation burden (TMB) is associated with improved efficacy of atezolizumab in 1L and 2L+ NSCLC patients.
        J Thorac Oncol. 2017; 12: S321-S322
        • Paz-Ares L.
        • Langer C.
        • Novello S.
        • et al.
        LBA80 - Pembrolizumab (pembro) plus platinum-based chemotherapy (chemo) for metastatic NSCLC: tissue TMB (tTMB) and outcomes in KEYNOTE-021,189, and 407.
        Ann Oncol. 2019; 30: v917-v918
        • Dziadziuszko R.
        • Peters S.
        • Gadgeel S.M.
        • et al.
        Atezolizumab (atezo) vs platinum-based chemo in blood-based tumour mutational burden-positive (bTMB+) patients (pts) with first-line (1L) advanced/metastatic (m)NSCLC: results of the Blood First Assay Screening Trial (BFAST) phase III cohort C.
        Ann Oncol. 2021; 32: S950-S951