Safety of First-line Nivolumab Plus Ipilimumab in Patients With Metastatic Non–Small Cell Lung Cancer: A Pooled Analysis of CheckMate 227, CheckMate 568, and CheckMate 817

Luis G. Paz-Ares, MD, PhD, Tudor Ciuleanu, MD, PhD, Adam Pluzanski, MD, PhD, Jong-Seok Lee, MD, PhD, Justin F. Gainor, MD, Gregory A. Otterson, MD, Clarisse Audigier-Valette, MD, Neal Ready, MD, PhD, Michael Schenker, MD, Helena Linardou, MD, PhD, Reyes Bernabe Caro, MD, PhD, Mariano Provencio, MD, Bogdan Zurawski, MD, Ki H. Lee, MD, Sang-We Kim, MD, Claudia Caserta, MD, Suresh S. Ramalingam, MD, David R. Spigel, MD, Julie R. Brahmer, MD, Martin Reck, MD, PhD, Ken J. O’Byrne, MD, PhD, Nicolas Girard, MD, PhD, Sanjay Popat, PhD, Solange Peters, MD, PhD, Arteid Memaj, MSc, Faith Nathan, MD, Nivedita Aanur, MD, Hossein Borghaei, DO, MS

PII: S1556-0864(22)01556-8
DOI: https://doi.org/10.1016/j.jtho.2022.08.014
Reference: JTHO 2516

To appear in: Journal of Thoracic Oncology

Received Date: 15 June 2022
Revised Date: 10 August 2022
Accepted Date: 21 August 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published.
in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc. on behalf of International Association for the Study of Lung Cancer.
Safety of First-line Nivolumab Plus Ipilimumab in Patients With Metastatic Non–Small Cell Lung Cancer: A Pooled Analysis of CheckMate 227, CheckMate 568, and CheckMate 817

Luis G. Paz-Ares, MD, PhD, a Tudor Ciuleanu, MD, PhD, b Adam Pluzanski, MD, PhD, c Jong-Seok Lee, MD, PhD, d Justin F Gainor, MD, e Gregory A. Otterson, MD, f Clarisse Audigier-Valette, MD, g Neal Ready, MD, PhD h Michael Schenker, MD, i Helena Linardou, MD, PhD, j Reyes Bernabe Caro, MD, PhD, k Mariano Provencio, MD, l Bogdan Zurawski, MD, m Ki H. Lee, MD, n Sang-We Kim, MD, o Claudia Caserta, MD, p Suresh S. Ramalingam, MD, q David R. Spigel, MD, r Julie R. Brahmer, MD, s Martin Reck, MD, PhD, t Ken J. O'Byrne, MD, PhD, u Nicolas Girard, MD, PhD, v Sanjay Popat, PhD, w Solange Peters, MD, PhD, x Arteid Memaj, MSc, y Faith Nathan, MD, aa Nivedita Aanur, MD, ab Hossein Borghaei, DO, MS

Affiliations

a Medical Oncology Department, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Av. de Córdoba SN, Madrid, Spain; lpazaresr@seom.org
b Department of Medical Oncology, Institutul Oncologic Prof Dr Ion Chiricuta and University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania; tudor_ciuleanu@hotmail.com
c Department of Lung Cancer and Chest Tumours, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; adam.pluzanski@coi.pl
d Department of Hematology/Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; jslee0918@gmail.com
e Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; jgainor@partners.org
f The Ohio State University-James Comprehensive Cancer Center, the Ohio State University, Columbus, OH, USA; greg.otterson@osumc.edu
g Orientation Oncologique, Hôpital Sainte-Musse, Toulon, France; clarisse.audigier-valette@ch-toulon.fr
h Department of Medicine, Duke University School of Medicine, Durham, NC, USA; neal.ready@ duke.edu
i Department of Medical Oncology, Sf Nectarie Oncology Center, Craiova, Romania; mike_schenker@yahoo.com
j Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, Athens, Greece; elinardou@otenet.gr
k Medical Oncology Department, Hospital Universitario Virgen Del Rocio, Instituto de Biomedicina de Seville, Seville, Spain; reyesbernam@yahoo.es
Corresponding author:
Dr Luis Paz-Ares; Medical Oncology Department, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Av. de Córdoba SN, 28041 Madrid, Spain; lpazaresr@seom.org; +34913908349
Funding
This work was supported by Bristol Myers Squibb (Princeton, NJ) and Ono Pharmaceutical Company Ltd. (Osaka, Japan).

Disclosure: Dr Paz-Ares reports travel, accommodation, and expenses from AstraZeneca, Bristol Myers Squibb, Merck Sharp & Dohme (MSD), Pfizer, Roche and Takeda; honoraria from Amgen, AstraZeneca, Bayer, Bristol Myers Squibb, Lilly, Merck Serono, Mirati, MSD, Novartis, Pfizer, PharmaMar, Roche/Genetech, Sanofi, Servier and Takeda; speaker fees from Bristol Myers Squibb, Lilly, Merck Serono, MSD Oncology, Pfizer and Roche/Genentech; research funding from AstraZeneca, Bristol Myers Squibb, MSD, PharmaMar; and personal fees from ALTUM Sequencing and Genomica. Prof Ciuleanu reports advisory/consulting fees, travel, accommodation, and expenses from Amgen, Astellas, AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, Ipsen, Janssen, MSD, Novartis/ GlaxoSmithKline, Pfizer, Roche, Sanofi, and Servier. Dr Pluzanski reports speaker fees, expert testimony, travel, accommodation, and expenses from Boehringer Ingelheim, Bristol Myers Squibb, MSD; speaker fees and expert testimony from Roche, speaker fees from Pfizer; and speaker fees, travel, accommodation, and expenses from AstraZeneca. Dr Lee reports advisory/consulting fees from AstraZeneca and Ono Pharmaceutical. Dr Gainor reports consulting fees and honoraria from AstraZeneca, Blueprint, Bristol Myers Squibb, EMD Serono, Gilead, GlydeBio, iTeos, Karyopharm, Loxo/Lilly, Merck, Moderna, Novartis, Oncorus, Pfizer, Regeneron, Silverback Therapeutics and Takeda; grant support from Adaptimmune, Alexo, Array Biopharma, Blueprint, Bristol Myers Squibb, Jounce, Merck, Moderna, Novartis and Tesaro; and an immediate family member who is an employee with equity at Ironwood Pharmaceuticals. Dr Otterson reports research grant fees from Astellas, AstraZeneca, Bristol Myers Squibb, Genentech, Merck and Pfizer; consultancy fees from AstraZeneca and Bristol Myers Squibb, Guardant Health and Gilead, and OncLive; Data and Safety Monitoring Committee for Beigene and Novocure; and speaker fees from OncLive. Dr Audigier-Valette reports advisory/consulting fees and role as a principal investigator for AbbVie; advisory/consulting fees, speaker fees and role as a principal investigator for AstraZeneca; advisory/consulting fees, speaker fees and role as a principal investigator for Boehringer Ingelheim, Bristol Myers Squibb, Novartis, and Roche; advisory role for FoundationOne and Takeda; advisory fees and role as principal investigator for GlaxoSmithKline, Janssen, MSD and Sanofi; and advisory/consulting fees and speaker fees for Lilly and Pfizer. Prof Ready reports consulting fees and honoraria from AstraZeneca, Bristol Myers Squibb, G1 Therapeutics, Genentech, Merck and Roche; research funding from Merck; honoraria from Novartis and Celgene; expert testimony fees from Bristol Myers Squibb and Celgene; speaker’s bureau fees from Bristol Myers Squibb; and personal fees
from AbbVie, Amgen, Jazz, Regeneron and Sanofi; other fees from AbbVie; and a grant from Amgen. **Dr Schenker** reports personal fees from AbbVie, Amgen, Astellas, AstraZeneca, Bayer, BeiGene, Bristol Myers Squibb, Clovis, Eli Lilly, Gilead, GlaxoSmithKline, Merck, MSD, Mylan, Novartis, Pfizer, Pharma Mar, Regeneron, Roche, Samsung Pharmaceuticals, Serono and Tesaro. **Dr Linardou** reports advisory fees from Amgen, Bristol Myers Squibb, Merck, MSD, Novartis, Pfizer and Roche; and advisory fees and speaker bureau/expert testimony fees from AstraZeneca. **Dr Bernabe Caro** reports advisory/consulting fees from AstraZeneca, Bristol Myers Squibb, MSD, Roche and Takeda. **Prof Provencio** reports honoraria and personal fees from Amgen, AstraZeneca, Bristol Myers Squibb, MSD, Roche and Takeda. **Dr Zurawski** reports funding from Amgen, AstraZeneca, Bristol Myers Squibb, GlaxoSmithKline, Janssen-Cilag, MSD and Roche. **Dr Lee** reports advisory fees from AstraZeneca, Bristol Myers Squibb, Eli Lilly, MSD and Pfizer. **Dr Kim** has nothing to disclose. **Dr Caserta** has nothing to disclose. **Dr Ramalingam** reports advisory/consulting fees from Amgen, AstraZeneca, Bristol Myers Squibb, Daiichi Sanyo, Eisai, Genentech/Roche, GlaxoSmithKline, Lilly, Merck, Sanofi, Takeda; and research funding from Advaxis, AstraZeneca, Bristol Myers Squibb, EMD Serono, Genmab, GlaxoSmithKline, Merck, Takeda, Tesaro. **Dr Spigel** reports grant support from Aegle Biotherapeutics, Agios, Apollomics, Arcus, Arrys Therapeutics, Astellas Pharma, Bayer, BeiGene, BIND Therapeutics, BioNTech, Blueprint Medicine, Calithera, Celgene, CellDex, Clovis oncology, Cyteir Therapeutics, Daiichi Sankyo, Denovo Biopharma, Eisai, Elevation Oncology, Eli Lilly, EMD Serono, Evelo, G1 Therapeutics, GlaxoSmithKline, GRAIL, Hutchinson MediPharma, ImClone Systems, ImmunoGen, Incyte, Ipsen, Janssen, Kronos Bio, Loxo Oncology, MacroGenics, MedImmune, Merck, Molecular Partners, Molecular Templates, Nektar, Neon Therapeutics, Novocure, Oncologie, PTC Therapeutics, PureTech Health, Razor Genomics, Repare Therapeutics, Rgenix, Takeda, Tesaro, Tizona Therapeutics, Transgene, University of Texas-Southwestern, and Verastem; and consulting support from Amgen, BeiGene, Curio Science, Eli Lilly, EMD Serono, Evidera, Exelixis, GlaxoSmithKline, Intellisphere, Janssen, Jazz Pharmaceuticals, Mirati Therapeutics, Molecular Templates, Novocure, Puma Biotechnology, Regeneron and Sanofi-Aventis. **Dr Brahmer** reports advisory/consultancy fees and research funding from Bristol Myers Squibb; advisory/consultancy fees from Amgen, AstraZeneca, Genentech, GlaxoSmithKline, Merck, Regeneron and Sanofi; consultancy fees and honoraria from Janssen; and advisory/consultancy fees and other from Roche/Genentech. **Prof Reck** reports advisory/consulting fees, travel, accommodation, and expenses from AbbVie and Amgen; advisory/consulting fees, speaker fees, expert testimony, travel, accommodation, and expenses AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, Eli Lilly, Merck, MSD, Novartis, Pfizer and Roche; and advisory/consulting fees from Samsung. **Prof O’Byrne**
reports advisory/consulting fees, speaker fees, expert testimony, honoraria, travel, accommodation, and expenses from AZD, Boehringer-Ingelheim, Bristol Myers Squibb, Janssen, Lilly Oncology, MSD, Pfizer, and Roche; advisory/consulting fees, speaker fees, expert testimony and honoraria from Novartis; advisory/consulting fees, speaker fees, and honoraria from Teva; advisory/consulting fees and honoraria from Natera, Takeda, Tristar and Yuhan; and being a shareholder at Carpe Vitae Pharmaceuticals, DGC diagnostics, Foundation Medicine and RepLuca Pharmaceuticals. **Prof Girard** reports grant/research funding, consultancy and honoraria from Astra Zeneca, MSD, Novartis and Roche; and personal fees from Bristol Myers Squibb. **Prof Popat** reports consulting fees from Astra Zeneca, Bayer, Beigene, Blueprint, Boehringer Ingelheim, Bristol Myers Squibb, Chugai, Daiichi Sankyo, Eli Lilly, GlaxoSmithKline, Guardant Health, Janssen, Merck Serono, MSD, Novartis, Pfizer, Roche, Seattle Genetics, Takeda and Turning Point Therapeutics. **Prof Peters** reports advisory fees from AbbVie, Bayer, Beigene, Biocartis, Bioinvent, Daiichi Sankyo, Debiopharm, Foundation Medicine, Illumina, Incyte, Janssen, Merrimack, Regeneron, and Sanofi; advisory and research grant fees from Amgen, Clovis, Merck Serono, Pharma Mar, Phosplatin Therapeutics, and Seattle Genetics; speaker, advisory and research grant fees from AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, F. Hoffmann-La Roche/Genentech, MSD, Novartis, Pfizer, and Takeda; advisory/consulting and speaker fees from Eli Lilly; and speaker fees from Ecancer, Fishawack, Imedex, IQVIA, Medscape, OncologyEducation, PER, PRIME, RMEI, and RTP. **Mr Memaj** reports employment and stock interest with Bristol Myers Squibb. **Dr Nathan** reports employment at Bristol Myers Squibb; and ownership/stock interest with AstraZeneca, Johnson & Johnson and Eli Lilly. **Dr Aanur** reports employment at Bristol Myers Squibb. **Dr Borghaei** reports advisory/consulting fees, travel, accommodation, and expenses from Amgen, Bristol Myers Squibb, Genentech, Lilly, Merck, Novartis; advisory/consulting fees from AbbVie, AstraZeneca, BioNTech AG, Boehringer Ingelheim, Cantargia AB, EMD Serono, Genmab, HUYA Bioscience International, Nuclaei, Pfizer, PharmaMar, Regeneron, Rgenix, Sonnet, Takeda and Trovagene; honoraria from Amgen, Axiom Biotechnologies, Bristol Myers Squibb, Celgene, Pfizer; research funding from Bristol Myers Squibb, Celgene, Lilly, Merck, Millennium; stock interest with Nuclaei, Rgenix, and Sonnet; travel, accommodation, and expenses from Clovis Oncology; data safety monitoring board with Incyte and University of Pennsylvania; and ad boards with Guardant, Natera and Oncocyte.
Abstract

Introduction: We characterized first-line nivolumab plus ipilimumab (NIVO+IPI) safety in a large patient population with metastatic non–small cell lung cancer (NSCLC) and efficacy outcomes after NIVO+IPI discontinuation due to treatment-related adverse events (TRAEs).

Methods: We pooled data from three first-line NIVO+IPI studies (NIVO, 3 mg/kg or 240 mg every 2 weeks; IPI, 1 mg/kg every 6 weeks) in metastatic NSCLC (CheckMate 227 Part 1, CheckMate 817 cohort A, CheckMate 568 Part 1). Safety endpoints included TRAEs and immune-mediated adverse events (IMAEs) in the pooled population and patients aged ≥75 years.

Results: In the pooled population (N=1255), any-grade TRAEs occurred in 78% of patients, grade 3/4 TRAEs in 34%, and discontinuations of any regimen component due to TRAEs in 21%. The most frequent TRAE and IMAE were diarrhea (20%; grade 3/4, 2%) and rash (17%; grade 3/4, 3%), respectively. The most common grade 3/4 IMAEs were hepatitis (5%) and diarrhea/colitis and pneumonitis (4% each). Pneumonitis was the most common cause of treatment-related death (5/16). Safety in patients aged ≥75 years (n=174) was generally similar to the overall population, but discontinuations of any regimen component due to TRAEs were more common (29%). In patients discontinuing NIVO+IPI due to TRAEs (n=225), 3-year overall survival was 50% (95% CI: 42.6–56.0), and 42% (31.2–52.4) of 130 responders remained in response 2 years after discontinuation.

Conclusions: First-line NIVO+IPI was well tolerated in this large population with metastatic NSCLC and in patients aged ≥75 years. Discontinuations due to TRAEs did not reduce long-term survival.

Keywords: NSCLC, nivolumab, ipilimumab, immune-mediated adverse events, safety
Introduction
Current first-line treatment options for metastatic non-small cell lung cancer (NSCLC) without genomic driver alterations include immunotherapy-based regimens either alone or in combination with platinum-doublet chemotherapy. These regimens have shown survival benefit compared with chemotherapy and have become the standard of care for first-line treatment of metastatic NSCLC. However, continued assessment of safety remains of key importance to clinicians as, together with clear clinical benefits, immunotherapies have a safety profile distinct from chemotherapy and other anticancer therapies. This includes a spectrum of adverse events termed immune-mediated adverse events (IMAEs), which arise due to the specific mechanisms of action of immunotherapies and require careful management. Older patients with NSCLC, compared with their younger counterparts, may present with characteristics such as multiple comorbidities and decline in cognitive function, which require careful consideration during NSCLC treatment. Despite the prevalence of lung cancer in older adults (36.3% of diagnoses are in patients aged ≥75 years) this patient population is generally underrepresented in cancer trials. Therefore, understanding the safety of immunotherapy regimens in patients aged ≥75 years is of particular interest.

Nivolumab, a fully human anti–programmed death protein 1 antibody, and ipilimumab, a fully human anti–cytotoxic T-lymphocyte antigen 4 antibody, are immune checkpoint inhibitors with distinct but complementary mechanisms of action. Nivolumab plus ipilimumab has shown durable overall survival (OS) benefit in multiple cancers, including NSCLC, renal cell carcinoma, melanoma, and malignant pleural mesothelioma. Notably, in the phase III CheckMate 227 Part 1 study (NCT02477826), nivolumab plus ipilimumab demonstrated significant and long-term OS benefit together with notably prolonged duration of response (DOR) versus chemotherapy as a first-line treatment in patients with metastatic NSCLC and tumor programmed death ligand 1 (PD-L1) expression ≥1%; in a prespecified descriptive analysis, similar benefit was seen in patients with tumor PD-L1 expression <1%. The safety profile of nivolumab plus ipilimumab was manageable. As a result of these findings, nivolumab plus ipilimumab was approved in the United States and other countries as a first-line treatment for adults with metastatic NSCLC and tumor PD-L1 ≥1% with no EGFR or ALK genomic tumor aberrations, and in Argentina and Japan as first-line treatment for patients with PD-L1 expression ≥1% or <1%. Nivolumab plus ipilimumab is also recommended by the NCCN Practice Guidelines in Oncology (NCCN Guidelines) and European Society for Medical Oncology guidelines as a first-line treatment option for eligible patients with metastatic NSCLC with either tumor PD-L1 ≥1% or <1% with no targetable driver alterations, regardless of histology. Data with a 4-year minimum follow-up showed that nivolumab
plus ipilimumab continued to provide durable responses and clinical benefits versus chemotherapy; safety was consistent with previous reports.9,31 Survival and safety outcomes from cohort A of the single-arm phase IIb CheckMate 817 study (NCT02869789)36-38 and the single-arm phase II CheckMate 568 Part 1 study (NCT02659059)39 further support use of first-line nivolumab plus ipilimumab in metastatic NSCLC.

Here, to better understand the safety profile of nivolumab plus ipilimumab, we report safety analyses of a large population pooled from three clinical studies investigating this combination as a first-line treatment of NSCLC: CheckMate 227 Part 1,9 CheckMate 817 cohort A,36-38 and CheckMate 568 Part 1.39 We also report safety in patients aged ≥75 years, a population of clinical interest with small patient numbers enrolled in individual clinical studies.24 Finally, we assess the effect of discontinuation of nivolumab plus ipilimumab due to treatment-related adverse events (TRAEs) on efficacy.

Materials and Methods

Study Designs and Patients

To further characterize the safety profile of nivolumab plus ipilimumab, data were pooled from three open-label clinical studies of first-line treatment with nivolumab plus ipilimumab for patients with metastatic NSCLC: phase III CheckMate 227 Part 1, phase IIb CheckMate 817 cohort A, and phase II CheckMate 568 Part 1. The study design, eligibility, and primary outcomes for these three studies have been previously reported (Supplementary Table 1).9,36-40 All three studies included adult patients with squamous or non-squamous stage IV or recurrent NSCLC (per 7th International Association for the Study of Lung Cancer classification) and an Eastern Cooperative Oncology Group performance status (ECOG PS) of ≤1. No patients in the pooled population had received previous systemic anticancer therapy for advanced or metastatic disease. Patients were required to have tumor samples available for evaluation of PD-L1 expression.9,38,39 In the randomized CheckMate 227 Part 1 study, patients were assigned to Part 1a or 1b and treated with nivolumab-based regimens or chemotherapy dependent on tumor PD-L1 expression level (≥1% or <1%). In both Part 1a and 1b, patients received nivolumab 3 mg/kg every 2 weeks (Q2W) plus ipilimumab 1 mg/kg every 6 weeks (Q6W) or platinum-doublet chemotherapy (every 3 weeks [Q3W] for up to four cycles) and optional pemetrexed maintenance (500 mg/m2) in patients with non-squamous histology.9,40 Part 1a also included a group receiving nivolumab monotherapy 240 mg Q2W, and Part 1b included a group receiving nivolumab 360 mg Q3W plus platinum-doublet chemotherapy. In the single-arm studies, patients received nivolumab 240 mg Q2W plus ipilimumab 1 mg/kg Q6W (CheckMate 817 cohort A)38 or nivolumab 3 mg/kg Q2W plus ipilimumab 1 mg/kg Q6W (CheckMate 568 Part 1).39 In all studies, treatment with nivolumab
plus ipilimumab continued until disease progression or unacceptable toxicity, or for a maximum of 2 years.

The studies were conducted in accordance with the Declaration of Helsinki and the International Conference on Harmonisation Good Clinical Practice Guidelines. Independent ethics committees or institutional review boards at participating study centers approved the protocols and all amendments. All patients provided written informed consent. The Bristol Myers Squibb policy on data sharing may be found at https://www.bms.com/researchers-and-partners/clinical-trials-and-research/disclosure-commitment.html.

Safety Endpoints and Assessments

All endpoints in the pooled population were considered exploratory, as all analyses were post hoc. These pooled safety analyses assessed TRAEs (including serious events and those leading to discontinuation) reported between the first dose and 30 days after the last dose of study treatment. Overall incidences of TRAEs and TRAEs leading to discontinuation in the chemotherapy arm of CheckMate 227 Part 1 are also reported. In addition, IMAEs (including those leading to discontinuation) and time to onset and resolution of IMAEs were analyzed. IMAEs were defined as specific events (or groups of preferred terms describing specific events) that included pneumonitis, diarrhea/colitis, hepatitis, nephritis/renal dysfunction, rash, endocrine events (adrenal insufficiency, hypothyroidism/thyroiditis, hyperthyroidism, diabetes mellitus, and hypophysitis), and other specific events, considered as potential immune-mediated events by the investigator, regardless of causality, that occurred within 100 days of the last dose, with no clear alternate etiology based on investigator assessment, or with an immune-mediated component, that were treated with immune-modulating medication. Endocrine adverse events were considered IMAEs regardless of immune-modulating medication use since endocrine drug reactions are often managed without immune-modulating medication. Patients who experienced an IMAE without worsening from baseline grade were excluded from time-to-resolution analyses; events without an end date or with a stop date equal to the death date were considered unresolved.

Assessment of Efficacy in Patients Who Discontinued Nivolumab Plus Ipilimumab Due to TRAEs

Efficacy was analyzed in the population of patients who had a TRAE (reported between the first dose and 30 days after the last dose of study treatment) that led to the discontinuation of all components of study treatment. OS (from randomization) and treatment-free interval (TFI; defined as the time from the last dose of study therapy to the start of the first subsequent
systemic therapy or death, whichever occurred first) were evaluated. TFI was set to zero for patients who received subsequent therapy prior to treatment discontinuation. Additional endpoints evaluated were progression-free survival, objective response rate (ORR), and DOR from the time of treatment discontinuation. Responses were assessed using Response Evaluation Criteria in Solid Tumors version 1.1 per investigators.

Statistical Analyses

All analyses were post hoc and carried out in all treated patients or subgroups of treated patients. OS, investigator-assessed progression-free survival, investigator-assessed DOR, TFI, and other time-to-event endpoints were estimated using Kaplan–Meier methodology. Exact two-sided 95% confidence intervals (CIs) for ORR were calculated using the Clopper–Pearson method. Descriptive statistics were used to summarize safety results, where applicable.

Results

Patient Demographics and Treatment Summary

A total of 1255 patients treated with nivolumab plus ipilimumab were pooled across the three studies (CheckMate 227, n=576; CheckMate 817, n=391; CheckMate 568, n=288). Baseline demographics of the pooled population are reported in Supplementary Table 2. While baseline characteristics were generally similar across studies, CheckMate 227 Part 1 had a higher proportion of patients with tumor PD-L1 expression ≥1% compared with the other studies due to the study design. Minimum follow-up (time between first dose and database lock) was 38.0 months (CheckMate 227), 30.6 months (CheckMate 817), and 37.7 months (CheckMate 568). In the pooled population, median age was 65 years (range, 26–91) and 174 (14%) patients were aged ≥75 years. Patients received a median of 9.0 doses of nivolumab and 3.0 doses of ipilimumab, with median duration of treatment of 4.1 months (range, 0–25.8) (Supplementary Table 3). At the time of analysis, all patients had discontinued treatment; main reasons for discontinuation were disease progression (50%), study drug toxicity (21%), and completed treatment (12%) (Fig. 1).

Baseline demographics of patients aged ≥75 years from the pooled population were broadly similar to the overall population; however, more of these patients had an ECOG PS of 1 (Supplementary Table 4). Patients aged ≥75 years received a median of 8.0 doses of nivolumab (range, 1–55) and 3.0 doses of ipilimumab (range, 1–19), with a median duration of treatment of 3.9 months (range, 0–25.6) (Supplementary Table 5). Similar to the overall pooled population, the main reasons for discontinuation were disease progression (38%), study drug toxicity (29%), and completed treatment (14%) (Supplementary Table 6).
Safety Profile

In the pooled patient population treated with nivolumab plus ipilimumab, TRAEs of any grade occurred in 78% of patients; grade 3 or 4 TRAEs occurred in 34%. Diarrhea was the most common TRAE of any grade (20%), followed by fatigue (18%) and pruritus (17%); the most common grade 3 or 4 TRAEs were increased lipase (6%), diarrhea (2%), and fatigue (2%) (Table 1). TRAEs leading to discontinuation of any component of the treatment regimen occurred in 21% of patients treated with nivolumab plus ipilimumab in the pooled population and 9% of patients treated with chemotherapy in CheckMate 227 Part 1. In patients treated with nivolumab plus ipilimumab, the most common TRAEs of any grade leading to discontinuation of any drug component were pneumonitis (4%), diarrhea (3%), and colitis (2%) (Supplementary Table 7). TRAEs leading to discontinuation of all components of the treatment regimen occurred in 18% of patients treated with nivolumab plus ipilimumab in the pooled population and 8% of patients treated with chemotherapy in CheckMate 227 Part 1. Serious TRAEs occurred in 23% of patients treated with nivolumab plus ipilimumab; the most common serious adverse events were pneumonitis (4%), diarrhea (2%), and colitis (2%). Treatment-related deaths occurred in 16 (1%) patients; pneumonitis was the most common cause of death (n=5) in these patients (Table 1). Notably, the incidence of TRAEs with nivolumab plus ipilimumab was similar in patients with squamous or non-squamous histology (Supplementary Table 8). The overall incidence of TRAEs reported in the chemotherapy arm of CheckMate 227 Part 1 (82%) was similar to that observed with nivolumab plus ipilimumab in this pooled analysis (78%) (Table 1). However, the incidence of TRAEs (any grade) leading to discontinuation was lower with chemotherapy (9%) than with nivolumab plus ipilimumab (21%). The most common TRAEs leading to discontinuation in patients treated with chemotherapy were fatigue and anemia (both 1%) (Supplementary Table 7).

The most common IMAE reported in the pooled nivolumab plus ipilimumab population was rash, with 17% of patients experiencing an event of any grade and 3% experiencing a grade 3 or 4 event; overall, the majority of IMAEs were grade 1 or 2. The most common grade 3 or 4 IMAE was hepatitis, reported in 5% of patients (Fig. 2A). IMAEs were generally similar regardless of histology (Supplementary Fig. 1). IMAEs of any grade leading to discontinuation in >1% of patients were pneumonitis (5%), diarrhea/colitis (4%), and hepatitis (3%) (Fig. 2A). IMAEs tended to occur within the first 6 months of treatment, with events generally trending down in each successive 6-month period (Fig. 2B). The IMAE with shortest median time to onset was hypersensitivity (0.5 months), approximately corresponding to one 2-week dosing interval; hyperthyroidism, nephritis/renal dysfunction, and rash all tended to occur within the first 2 months of treatment (Table 2, Supplementary
Fig. 2A). Non-endocrine IMAEs tended to resolve within the study period (77%–93% resolved; median time to resolution ≤1.5 months), whereas hyperthyroidism was the only endocrine IMAE with the majority of events resolved (77%) (Table 2, Supplementary Fig. Fig. 2B).

In patients aged ≥75 years, the proportion of those with TRAEs of any grade was similar to the overall pooled population (78% for both). Grade 3 or 4 TRAEs were reported in a somewhat higher proportion of patients aged ≥75 years than in the overall population (44% vs 34%, respectively), and TRAEs leading to discontinuation were numerically more frequent among patients aged ≥75 years (29% vs 21%, respectively). Serious TRAEs were also numerically more frequent among older adult patients (29% vs 23%; grade 3 or 4, 24% vs 18%; Table 1). Treatment-related deaths occurred in two (1%) patients aged ≥75 years (myocarditis and autoimmune esophagitis; n=1 each), which was consistent with the overall population (Table 1). The incidence of IMAEs of any grade in patients aged ≥75 years was also comparable with the overall population, and with patients aged <75 years (Supplementary Fig. 3). As with the overall population, IMAEs in patients aged ≥75 years tended to occur within the first 6 months of treatment (Supplementary Table 10), with the exception of diabetes mellitus, which had a median time to onset of 9.4 months (range, 0.7–18.2 months); this occurred in only two patients, making the data difficult to interpret. Similar to the pooled population, the IMAE with the shortest median time to onset was hypersensitivity (0.5 months); hyperthyroidism, nephritis/renal dysfunction, and rash all tended to occur within the first 2 months of treatment (Supplementary Table 10). As with the overall population, the majority of non-endocrine IMAEs resolved (≥76%) during the study period, while adrenal insufficiency and hyperthyroidism were the only endocrine IMAEs with the majority of events resolved (75% and 57%, respectively) (Supplementary Table 10).

Management of IMAEs

In the pooled patient population, across categories, most non-endocrine IMAEs were treated with corticosteroids at doses of ≥40 mg prednisone or equivalent (Table 2); use of corticosteroids tended to be higher for non-endocrine than for endocrine events, as expected, since endocrine IMAEs are often managed with hormone-replacement medication. Corticosteroid use ranged from 4% in patients with hypothyroidism/thyroiditis to 90% in patients with pneumonitis or nephritis/renal dysfunction (Table 2). Median duration of corticosteroid use ranged from 0.1 weeks (1 day) for diabetes mellitus and hypersensitivity to 4.0 weeks for hypothyroidism/thyroiditis. Median duration of corticosteroid use for
pneumonitis and diarrhea/colitis was 3.0 and 2.0 weeks, respectively. A similar pattern of IMAE management with corticosteroids at doses of ≥40 mg prednisone or equivalent was seen in patients aged ≥75 years (Supplementary Table 10) and also in patients with IMAEs leading to treatment discontinuation (Supplementary Table 11).

Few patients received immunosuppressive treatment other than corticosteroids for management of IMAEs. Infliximab was received by four patients with pneumonitis and five patients with diarrhea/colitis, among whom the IMAE led to discontinuation of study treatment in three and four patients, respectively. Mycophenolic acid was received by seven patients with hepatitis, which led to treatment discontinuation in five of these patients, including one patient who also received azathioprine. Among patients aged ≥75 years, only one received immunosuppressive treatment other than corticosteroids; this patient was one of those treated with infliximab for diarrhea/colitis who discontinued study treatment.

Outcomes in Patients With TRAEs Leading to Discontinuation of Nivolumab Plus Ipilimumab

A total of 225 patients were included in the analysis of efficacy outcomes in patients who discontinued nivolumab plus ipilimumab due to TRAEs. In general, the baseline characteristics of this population were consistent with the overall pooled population (Supplementary Table 12). Patients received a median of 9.0 (range, 1–51) doses of nivolumab and 3.0 (1–17) doses of ipilimumab; median duration of treatment was 4.2 (range, 0–23.5) months. The 3-year OS rate (from time of randomization) was 50% (95% CI: 42.6–56.0) in patients who discontinued nivolumab plus ipilimumab due to TRAEs (Fig. 3) and 35% (95% CI: 32.5–37.9) in the pooled population (Supplementary Fig. 4). Investigator-assessed ORR was 58% (95% CI: 51.0–64.3). Two years after treatment discontinuation due to TRAEs, 31% (95% CI: 23.2–39.3) of 225 patients overall were progression-free, and 42% (95% CI: 31.2–52.4) of 130 responders remained in response to nivolumab plus ipilimumab; 38% (95% CI: 31.5–44.8) of patients did not receive subsequent systemic treatment for ≥2 years (Table 3). OS in patients aged ≥75 years who discontinued nivolumab plus ipilimumab due to TRAEs (Supplementary Fig. 5) was consistent with the overall population.

Discussion
To our knowledge, this study of 1255 patients and a minimum follow-up of >2 years is the largest safety analysis to date from clinical trials of a first-line immunotherapy regimen for metastatic NSCLC. Data from the pooled safety analyses were consistent with individual trial
data and showed a manageable safety and tolerability profile with no new safety signals identified. The safety profile of nivolumab plus ipilimumab was consistent across patients with squamous or non-squamous histology. Notably, onset of new IMAEs tended to occur within the first 6 months of treatment, suggesting that those patients who received long-term treatment with nivolumab plus ipilimumab did not experience an increased burden of toxicity. Most IMAEs were grade 1 or 2 and resolved with corticosteroid treatment; other immunomodulatory drugs were rarely used to manage IMAEs. Pneumonitis was the most common IMAE leading to treatment discontinuation, in 5% of patients; 77% of pneumonitis cases resolved.

Discontinuing nivolumab plus ipilimumab due to TRAEs did not negatively affect the long-term survival benefit observed in the overall pooled population, consistent with previous reports in patients who discontinued nivolumab-based regimens. Patients who discontinued nivolumab plus ipilimumab due to TRAEs experienced a notable DOR and treatment-free period after discontinuation of the regimen; approximately 40% of patients remained in response, and a similar proportion were treatment-free 2 years after discontinuation. While any assessment of the impact of one treatment outcome (discontinuation due to TRAEs) on another (OS and other efficacy endpoints) is subject to time bias, this analysis addresses an important clinical question.

This large, pooled population also provided an opportunity for robust analyses of the subgroup of patients aged ≥75 years, which has not been feasible in individual studies due to small sample sizes. Of note, a numerically higher proportion of patients aged ≥75 years had an ECOG PS of 1 (72%) compared with the overall pooled population (61%). Nevertheless, rates of TRAEs and IMAEs with nivolumab plus ipilimumab in these patients were similar to the overall patient population. While the incidence of grade 3 or 4 TRAEs, serious TRAEs, and discontinuations due to TRAEs were somewhat higher among patients aged ≥75 years, the results indicate a generally consistent and manageable safety profile for this treatment regimen across age groups. As with the overall population, the majority of non-endocrine IMAEs resolved, suggesting that these events are manageable in this patient population. Patients aged ≥75 years who discontinued nivolumab plus ipilimumab treatment due to TRAEs also had OS benefits similar to the overall pooled population.

As reported previously, CheckMate 227 Part 1 not only assessed nivolumab plus ipilimumab, but also provided the opportunity to compare different nivolumab-based regimens within one study. Other regimens assessed were nivolumab monotherapy and nivolumab plus chemotherapy, with safety data from a 4-year follow-up recently reported.
In the pooled nivolumab plus ipilimumab population, modest relative increases in IMAEs were observed compared with the nivolumab monotherapy or nivolumab plus chemotherapy arms of CheckMate 227. For example, the most common grade 3 or 4 IMAEs in the pooled analysis were hepatitis (5%), diarrhea/colitis (4%), and pneumonitis (4%); the equivalent incidences with nivolumab monotherapy were 4%, 1%, and 2%, respectively, and for nivolumab plus chemotherapy were 2%, 1%, and 3%, respectively. However, most IMAEs with nivolumab plus ipilimumab were low-grade and resolved (except endocrine events), similar to the patterns observed across the immunotherapy-containing arms of CheckMate 227. IMAE management with nivolumab plus ipilimumab in this pooled analysis was similar to previously reported findings with nivolumab monotherapy or nivolumab plus chemotherapy in CheckMate 227; across immunotherapy-containing regimens, very few patients required immune-modulating agents beyond systemic corticosteroids and the duration of corticosteroid use was relatively short (median <5 weeks). Slightly higher incidences of any-grade and grade 3 or 4 TRAEs were observed in patients treated with nivolumab plus ipilimumab in this pooled analysis (78% and 34%, respectively) compared with the nivolumab monotherapy arm of CheckMate 227 (66% and 20%); notably, TRAEs with nivolumab plus ipilimumab in our pooled analysis were less frequent than with nivolumab plus chemotherapy (92% and 56%). Identifying patient risk factors for specific adverse events is an important clinical question to improve benefit–risk assessments for individual patients. Despite the large sample size in this pooled analysis, the number of patients experiencing any individual adverse event (preferred term) of clinical interest remained small, limiting a detailed analysis of risk factors. This remains an area for future research in prospective studies and real-world datasets.

Since the first approval of nivolumab plus ipilimumab for metastatic melanoma, the optimization of the dosing regimen for various tumor types has been important for clinical management of TRAEs. Across the three studies in this pooled safety analysis, ipilimumab was consistently dosed at 1 mg/kg Q6W. This dosing regimen was first shown to be tolerable in combination with nivolumab for treating patients with NSCLC in a phase I study that investigated several dosing regimens of nivolumab plus ipilimumab. A limitation of our study is that different nivolumab dosing regimens were used across the individual studies in this pooled population (flat-dose versus weight-based), where pharmacokinetic modeling has shown that exposure, safety, and efficacy of flat-dose nivolumab is similar to weight-based dosing. In addition, as the pooled analyses included patients from single-arm studies (CheckMate 817 and CheckMate 568), there was no pooled comparator arm available to directly assess alongside nivolumab plus ipilimumab combination therapy; TRAEs from the
chemotherapy arm of CheckMate 227 have been included for additional context. Finally, this pooled analysis was performed retrospectively and was not statistically powered. Of note, our post hoc analysis had a median duration of therapy of 4.1 months, and per protocol, safety follow-up after treatment discontinuation was 100 days. As such, robust conclusions regarding longer-term safety of nivolumab plus ipilimumab are beyond the scope of this analysis.

In conclusion, this large, pooled safety analysis of nivolumab plus ipilimumab demonstrates that this combination immunotherapy regimen provides a manageable safety and tolerability profile in patients with metastatic NSCLC, consistent with the individual studies. Safety was generally consistent regardless of age or histology, and treatment discontinuation due to TRAEs had no negative effect on survival outcomes.

Acknowledgements

This work was supported by Bristol Myers Squibb. Employees of the sponsor are authors of this manuscript who contributed to the design of the study; the collection, analysis, and interpretation of the data; the writing of this report; and the decision to submit the article for publication along with the other authors. We thank the patients and families who made these trials possible, the investigators and clinical study teams who participated in the trials, and Dako, an Agilent Technologies company, for collaborative development of the PD-L1 IHC 28-8 pharmDx assay. Professional medical writing support was provided by Ashvanti Valji, PhD, of Caudex, London, UK, and was funded by Bristol Myers Squibb. The NCCN guidelines were cited with the permission of NCCN. NCCN makes no warranties of any kind whatsoever regarding their content, use, or application, and disclaims any responsibility for their application or use in any way.
References

1. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology: (NCCN Guidelines®) for Non-Small Cell Lung Cancer. Version 1.2022. @ National Comprehensive Cancer Network, Inc. 2021. All rights reserved. Accessed December 10, 2021. See the NCCN Guidelines® for detailed recommendations including preferred treatment options. To view the most recent and complete version of the guideline, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

17
32.
31.
30.
29.
28.
27.
26.
25.
24.
23.
22.
21.
20.
19.
1
8.
72x89}Wolchok JD, Chiarion-Paz, Motzer RJ, Escudier B, McDermott DF, et al. Survival outcomes and independent

Tables

Table 1. Safety Summary in All Patients and Patients ≥75 Years Treated With Nivolumab Plus Ipilimumab in the Pooled Population and With Chemotherapy in CheckMate 227 Part 1

<table>
<thead>
<tr>
<th>Patients with an event</th>
<th>Any TRAE</th>
<th>Any grade</th>
<th>Grade 3 or 4</th>
<th>Any TRAE</th>
<th>Any grade</th>
<th>Grade 3 or 4</th>
<th>Any TRAE</th>
<th>Any grade</th>
<th>Grade 3 or 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivolumab Plus Ipilimumab</td>
<td>N=1255</td>
<td>N=174</td>
<td>N=570</td>
<td>N=1255</td>
<td>N=174</td>
<td>N=570</td>
<td>N=1255</td>
<td>N=174</td>
<td>N=570</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pooled Overall Population,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any grade</td>
<td>977 (77.8%)</td>
<td>431 (34.3%)</td>
<td>135 (77.6%)</td>
<td>76 (43.7%)</td>
<td>469 (82.3%)</td>
<td>206 (36.1%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3 or 4</td>
<td>256 (20.4%)</td>
<td>30 (2.4%)</td>
<td>34 (19.5%)</td>
<td>5 (2.9%)</td>
<td>55 (9.6%)</td>
<td>4 (0.7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients Aged ≥75 Years,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any grade</td>
<td>135 (77.6%)</td>
<td>22 (1.8%)</td>
<td>34 (19.5%)</td>
<td>3 (1.7%)</td>
<td>108 (18.9%)</td>
<td>8 (1.4%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3 or 4</td>
<td>219 (17.5%)</td>
<td>8 (0.6%)</td>
<td>33 (19.0%)</td>
<td>2 (1.1%)</td>
<td>7 (1.2%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CheckMate 227 Part 1,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any grade</td>
<td>175 (13.9%)</td>
<td>18 (1.4%)</td>
<td>21 (12.1%)</td>
<td>2 (1.1%)</td>
<td>30 (5.3%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3 or 4</td>
<td>210 (16.7%)</td>
<td>5 (0.4%)</td>
<td>21 (12.1%)</td>
<td>1 (0.6%)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAES in ≥10% of patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>149 (11.9%)</td>
<td>5 (0.4%)</td>
<td>16 (9.2%)</td>
<td>0</td>
<td>206 (36.1%)</td>
<td>12 (2.1%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>135 (10.8%)</td>
<td>6 (0.5%)</td>
<td>7 (4.0%)</td>
<td>1 (0.6%)</td>
<td>73 (12.8%)</td>
<td>5 (0.9%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pruritus</td>
<td>98 (7.8%)</td>
<td>15 (1.2%)</td>
<td>7 (4.0%)</td>
<td>1 (0.6%)</td>
<td>77 (13.5%)</td>
<td>13 (2.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>98 (7.8%)</td>
<td>17 (1.4%)</td>
<td>21 (12.1%)</td>
<td>4 (2.3%)</td>
<td>8 (1.4%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>133 (10.6%)</td>
<td>6 (0.5%)</td>
<td>16 (9.2%)</td>
<td>0</td>
<td>206 (36.1%)</td>
<td>12 (2.1%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>98 (7.8%)</td>
<td>17 (1.4%)</td>
<td>21 (12.1%)</td>
<td>4 (2.3%)</td>
<td>8 (1.4%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>98 (7.8%)</td>
<td>17 (1.4%)</td>
<td>21 (12.1%)</td>
<td>4 (2.3%)</td>
<td>8 (1.4%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rash maculopapular</td>
<td>98 (7.8%)</td>
<td>17 (1.4%)</td>
<td>21 (12.1%)</td>
<td>4 (2.3%)</td>
<td>8 (1.4%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>83 (5.0%)</td>
<td>6 (0.5%)</td>
<td>6 (3.4%)</td>
<td>1 (0.6%)</td>
<td>77 (13.5%)</td>
<td>13 (2.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constipation</td>
<td>33 (2.6%)</td>
<td>0</td>
<td>1 (0.6%)</td>
<td>0</td>
<td>85 (14.9%)</td>
<td>2 (0.4%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>16 (5.6%)</td>
<td>1 (0.3%)</td>
<td>8 (4.6%)</td>
<td>2 (1.1%)</td>
<td>191 (33.5%)</td>
<td>66 (11.6%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients with an event</td>
<td>Pooled Overall Population, n (%)</td>
<td>Patients Aged ≥75 Years, n (%)</td>
<td>CheckMate 227 Part 1, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivolumab Plus Ipilimumab (n=1255)</td>
<td>Nivolumab Plus Ipilimumab (n=174)</td>
<td>Chemotherapy (n=570)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decreased neutrophil count</td>
<td>7 (0.6)</td>
<td>1 (0.6)</td>
<td>64 (11.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutropenia</td>
<td>2 (0.2)</td>
<td>0 (<0.1)</td>
<td>99 (17.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any TRAE leading to discontinuation of a drug component</td>
<td>259 (20.6)</td>
<td>174 (13.9)</td>
<td>53 (9.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serious TRAEs</td>
<td>291 (23.2)</td>
<td>226 (18.0)</td>
<td>79 (13.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment-related deaths(^a)</td>
<td>16 (1.3)</td>
<td>2 (1.1)</td>
<td>6 (1.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Includes events reported between the first dose and 30 days after the last dose of study therapy.

\(^a\)Treatment-related deaths in the pooled nivolumab plus ipilimumab arm included pneumonitis (n=5), myocarditis (patient aged ≥75 years), acute tubular necrosis, shock, cardiac tamponade, heart failure due to rhabdomyolysis, Guillain-Barré syndrome, autoimmune esophagitis (patient aged ≥75 years), autoimmune hepatitis, hypoxia, cardiomegaly, and pancreatitis and elevated bilirubin (n=1 each). Treatment-related deaths in CheckMate 227 Part 1 chemotherapy arm included sepsis (n=2), febrile neutropenia with sepsis, multiple brain infarctions, interstitial lung disease, and thrombocytopenia (n=1 each).

TRAE, treatment-related adverse event.
Table 2. Time to Onset and Resolution of IMAEs\(^a\) and Use of Systemic Corticosteroids (≥40 mg) in All Patients Treated With Nivolumab Plus Ipilimumab in the Pooled Population

<table>
<thead>
<tr>
<th>Endocrine</th>
<th>Any-Grade Events, n (%)</th>
<th>Time to Onset, Median (IQR), Months</th>
<th>Time to Resolution, Median (95% CI), Months(^b)</th>
<th>Any-Grade Events That Resolved, n (%)(^c)</th>
<th>Corticosteroid ≥40 mg, n (%)</th>
<th>Duration of Corticosteroid ≥40 mg, Median, Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal insufficiency</td>
<td>54 (4.3)</td>
<td>6.0 (3.8–8.4)</td>
<td>NR (NR–NR)</td>
<td>17 (31.5)</td>
<td>14 (25.9)</td>
<td>3.0</td>
</tr>
<tr>
<td>Hypothyroidism/ thyroiditis</td>
<td>171 (13.6)</td>
<td>3.2 (2.2–5.6)</td>
<td>NR (NR–NR)</td>
<td>52 (30.6)</td>
<td>6 (3.5)</td>
<td>4.0</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>13 (1.0)</td>
<td>4.6 (1.8–6.4)</td>
<td>NR (1.22–NR)</td>
<td>3 (23.1)</td>
<td>1 (7.7)</td>
<td>0.1(^d)</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>106 (8.4)</td>
<td>1.4 (1.4–2.8)</td>
<td>1.9 (1.4–2.3)</td>
<td>82 (77.4)</td>
<td>8 (7.5)</td>
<td>1.2</td>
</tr>
<tr>
<td>Hypophysitis</td>
<td>33 (2.6)</td>
<td>4.4 (2.5–6.2)</td>
<td>NR (1.4–NR)</td>
<td>13 (39.4)</td>
<td>12 (36.4)</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-endocrine</th>
<th>Any-Grade Events, n (%)</th>
<th>Time to Onset, Median (IQR), Months</th>
<th>Time to Resolution, Median (95% CI), Months(^b)</th>
<th>Any-Grade Events That Resolved, n (%)(^c)</th>
<th>Corticosteroid ≥40 mg, n (%)</th>
<th>Duration of Corticosteroid ≥40 mg, Median, Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonitis</td>
<td>105 (8.4)</td>
<td>4.2 (1.6–7.3)</td>
<td>1.4 (1.0–2.0)</td>
<td>81 (77.1)</td>
<td>95 (90.5)</td>
<td>3.0</td>
</tr>
<tr>
<td>Diarrhea/ colitis</td>
<td>123 (9.8)</td>
<td>4.0 (2.1–8.7)</td>
<td>0.7 (0.5–1.0)</td>
<td>114 (92.7)</td>
<td>99 (80.5)</td>
<td>2.0</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>78 (6.2)</td>
<td>3.2 (1.4–7.3)</td>
<td>1.4 (1.2–2.1)</td>
<td>70 (89.7)</td>
<td>68 (87.2)</td>
<td>2.8</td>
</tr>
<tr>
<td>Nephritis/ renal dysfunction</td>
<td>10 (0.8)</td>
<td>1.4 (0.5–2.8)</td>
<td>0.3 (0.1–2.3)</td>
<td>8 (80.0)</td>
<td>9 (90.0)</td>
<td>1.4</td>
</tr>
<tr>
<td>Rash</td>
<td>208 (16.6)</td>
<td>1.5 (0.4–4.4)</td>
<td>1.5 (1.3–2.2)</td>
<td>168 (81.2)</td>
<td>51 (24.5)</td>
<td>1.6</td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td>22 (1.8)</td>
<td>0.5 (0.5–1.6)</td>
<td><0.1 (<0.1–0.4)</td>
<td>20 (90.9)</td>
<td>10 (45.5)</td>
<td>0.1(^d)</td>
</tr>
</tbody>
</table>

\(^a\)IMAEs were defined as specific events (or groups of preferred terms describing specific events) that included pneumonitis, diarrhea/colitis, hepatitis, nephritis/renal dysfunction, rash, endocrine events (adrenal insufficiency, hypothyroidism/thyroiditis, hyperthyroidism, diabetes mellitus, and hypophysitis), and other specific events considered as potential immune-mediated events by the investigator, regardless of causality, that occurred within 100 days of the last dose, with no clear alternate etiology based on investigator assessment, or with an immune-mediated component, that were treated with immune-modulating medication. Endocrine adverse events were considered IMAEs regardless of
immune-modulating medication use since endocrine drug reactions are often managed without immune-modulating medication. CTCAE Version 4.0; MedDRA Version: 22.1.

bPer Kaplan–Meier estimates

cDenominator based on number of any-grade events for each event category.

dEquivalent to 1 day.

CI, confidence interval; IMAE, immune-mediated adverse event; IQR, interquartile range; NR, not reached.
Table 3. Outcomes in Patients Who Discontinued All Components of the Nivolumab Plus Ipilimumab Regimen Due to TRAEs

<table>
<thead>
<tr>
<th>Patients Who Discontinued Due to TRAEs (n=225)</th>
<th>Progression-free after discontinuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥1 year after discontinuation, % (95% CI)</td>
</tr>
<tr>
<td></td>
<td>≥2 years after discontinuation, % (95% CI)</td>
</tr>
<tr>
<td>ORR, a n (%)</td>
<td>130 (57.8)</td>
</tr>
<tr>
<td>95% CI</td>
<td>51.0–64.3</td>
</tr>
<tr>
<td>DOR after discontinuation, a % (95% CI)</td>
<td></td>
</tr>
<tr>
<td>Ongoing response ≥1 year after discontinuation</td>
<td>61.0 (51.0–69.7)</td>
</tr>
<tr>
<td>Ongoing response ≥2 years after discontinuation</td>
<td>42.0 (31.2–52.4)</td>
</tr>
<tr>
<td>Treatment-free interval, b % (95% CI)</td>
<td></td>
</tr>
<tr>
<td>1 year</td>
<td>52.9 (46.2–59.2)</td>
</tr>
<tr>
<td>2 years</td>
<td>38.2 (31.5–44.8)</td>
</tr>
</tbody>
</table>

Post hoc analysis; includes patients with TRAEs (reported between the first dose and 30 days after the last dose of study treatment) that were considered as leading to discontinuation of all components of study treatment.

a Per investigator.

b Treatment-free interval was defined as the time from the last dose of study therapy to the start of the first subsequent systemic therapy or death, whichever occurred first, and was set to zero for patients who received subsequent therapy prior to treatment discontinuation.

CI, confidence interval; DOR, duration of response; ORR, objective response rate; TRAE, treatment-related adverse event.
Figure legends

Figure 1. CONSORT flow diagram. aOne patient in CheckMate 227 Part 1 discontinued treatment but was captured as still on treatment by the statistical algorithm because an off-treatment date was not provided by the site.

Figure 2. (A) Overall incidence of IMAEs and IMAEs leading to discontinuation and (B) time to first IMAE in all patients receiving nivolumab plus ipilimumab in the pooled population. IMAEs were defined as specific events (or groups of preferred terms describing specific events) that included pneumonitis, diarrhea/colitis, hepatitis, nephritis/renal dysfunction, rash, endocrine events (adrenal insufficiency, hypothyroidism/thyroiditis, hyperthyroidism, diabetes mellitus, and hypophysitis), and other specific events considered as potential immune-mediated events by the investigator, regardless of causality, that occurred within 100 days of the last dose, with no clear alternate etiology based on investigator assessment or with an immune-mediated component, that were treated with immune-modulating medication. Endocrine adverse events were considered IMAEs regardless of immune-modulating medication use since endocrine drug reactions are often managed without immune-modulating medication. CTCAE v4.0; MedDRA v22.1. IMAE, immune-mediated adverse event.

Figure 3. OS in patients who discontinued nivolumab plus ipilimumab due to TRAEs. Minimum follow-up, 29.1 months; 1-year survival rate 95% CI: 72.1–83.0; 2-year survival rate 95% CI: 53.1–66.0; 3-year survival rate 95% CI: 42.6–56.0. OS, overall survival; TRAE, treatment-related adverse event.
CheckMate 227 Part 1
\[n = 576 \]

CheckMate 917 Cohort A
\[n = 391 \]

CheckMate 568 Part 1
\[n = 288 \]

Patients treated with nivolumab plus ipilimumab in the pooled population
\[n = 1255 \]

Patients still on treatment
\[n = 1^*_1 (<0.1\%) \]

Patients not continuing on treatment
\[n = 1254 (>99.9\%) \]

Analysis population
\[n = 1255 (100\%) \]

- Disease progression, \(n = 633 \) (50.4\%)
- Study drug toxicity, \(n = 264 \) (21.0\%)
- Completed treatment, \(n = 151 \) (12.0\%)
- Unrelated adverse event, \(n = 102 \) (8.1\%)
- Patient request, \(n = 25 \) (2.0\%)
- Patient withdrew consent, \(n = 19 \) (1.5\%)
- Maximum clinical benefit, \(n = 9 \) (0.7\%)
- Patient no longer met study criteria, \(n = 1 \) (<0.1\%)
- Lost to follow-up, \(n = 1 \) (<0.1\%)
- Poor/non-compliance, \(n = 1 \) (<0.1\%)
- Death, \(n = 14 \) (1.1\%)
- Other, \(n = 23 \) (1.8\%)
- Not reported, \(n = 11 \) (0.9\%)
Number of patients at risk
Discontinued due to TRAEs 225 199 172 149 129 114 70 26 4 0

OS (%) vs Time from randomization (months)

50% 60% 78%
CRediT Authorship Contribution Statement

Luis G. Paz-Ares: Conceptualization, Methodology, Validation, Investigation, Resources, Data curation, Writing - review & editing, Supervision.

Tudor-Eliade Ciuleanu: Validation, Investigation, Resources, Data curation, Writing - review & editing.

Adam Pluzanski: Validation, Investigation, Resources, Data curation, Writing - review & editing.

Jong-Seok Lee: Validation, Investigation, Resources, Data curation, Writing - review & editing.

Justin F. Gainor: Conceptualization, Methodology, Validation, Investigation, Resources, Data curation, Writing - review & editing, Supervision.

Gregory A. Otterson: Validation, Investigation, Resources, Data curation, Writing - review & editing.

Clarisse Audigier-Valette: Validation, Investigation, Resources, Data curation, Writing - review & editing.

Neal Ready: Conceptualization, Methodology, Validation, Investigation, Resources, Data curation, Writing - review & editing, Supervision.

Michael Schenker: Validation, Investigation, Resources, Data curation, Writing - review & editing.

Helena Linardou: Validation, Investigation, Resources, Data curation, Writing - review & editing.

Reyes Bernabe Caro: Validation, Investigation, Resources, Data curation, Writing - review & editing.

Mariano Provencio: Validation, Investigation, Resources, Data curation, Writing - review & editing.

Bogdan Zurawski: Validation, Investigation, Resources, Data curation, Writing - review & editing.

Ki Hyeong Lee: Validation, Investigation, Resources, Data curation, Writing - review & editing.

Sang-We Kim: Validation, Investigation, Resources, Data curation, Writing - review & editing.

Claudia Caserta: Validation, Investigation, Resources, Data curation, Writing - review & editing.

Suresh S. Ramalingam: Conceptualization, Methodology, Validation, Investigation, Resources, Data curation, Writing - review & editing, Supervision.

David R. Spigel: Conceptualization, Methodology, Validation, Investigation, Resources, Data curation, Writing - review & editing, Supervision.

Julie R. Brahmer: Conceptualization, Methodology, Validation, Investigation, Resources, Data curation, Writing - review & editing, Supervision.

Martin Reck: Conceptualization, Methodology, Validation, Investigation, Resources, Data curation, Writing - review & editing, Supervision.

Kenneth J. O’Byrne: Conceptualization, Methodology, Validation, Investigation, Resources, Data curation, Writing - review & editing, Supervision.

Nicolas Girard: Conceptualization, Validation, Investigation, Resources, Data curation, Writing - review & editing.
Sanjay Popat: Conceptualization, Validation, Investigation, Resources, Data curation, Writing - review & editing.

Solange Peters: Conceptualization, Validation, Investigation, Resources, Data curation, Writing - review & editing.

Arteid Memaj: Software, Formal Analysis, Data curation, Writing - review & editing, Visualization.

Faith Nathan: Conceptualization, Methodology, Validation, Data curation, Writing - review & editing, Visualization, Supervision, Project administration, Funding acquisition.

Nivedita Aanur: Validation, Data curation, Writing - review & editing, Visualization, Supervision, Project administration, Funding acquisition.

Hossein Borghaei: Conceptualization, Methodology, Validation, Investigation, Resources, Data curation, Writing - review & editing, Supervision.