Advertisement

A Knock-In Mouse Model of Thymoma With the GTF2I L424H Mutation

Published:August 29, 2022DOI:https://doi.org/10.1016/j.jtho.2022.08.008

      Abstract

      Introduction

      The pathogenesis of thymic epithelial tumors remains largely unknown. We previously identified GTF2I L424H as the most frequently recurrent mutation in thymic epithelial tumors. Nevertheless, the precise role of this mutation in tumorigenesis of thymic epithelial cells is unclear.

      Methods

      To investigate the role of GTF2I L424H mutation in thymic epithelial cells in vivo, we generated and characterized a mouse model in which the Gtf2i L424H mutation was conditionally knocked-in in the Foxn1+ thymic epithelial cells. Digital spatial profiling was performed on thymomas and normal thymic tissues with GeoMx-mouse whole transcriptome atlas. Immunohistochemistry staining was performed using both mouse tissues and human thymic epithelial tumors.

      Results

      We observed that the Gtf2i mutation impairs development of the thymic medulla and maturation of medullary thymic epithelial cells in young mice and causes tumor formation in the thymus of aged mice. Cell cycle-related pathways, such as E2F targets and MYC targets, are enriched in the tumor epithelial cells. Results of gene set variation assay analysis revealed that gene signatures of cortical thymic epithelial cells and thymic epithelial progenitor cells are also enriched in the thymomas of the knock-in mice, which mirrors the human counterparts in The Cancer Genome Atlas database. Immunohistochemistry results revealed similar expression pattern of epithelial cell markers between mouse and human thymomas.

      Conclusions

      We have developed and characterized a novel thymoma mouse model. This study improves knowledge of the molecular drivers in thymic epithelial cells and provides a tool for further study of the biology of thymic epithelial tumors and for development of novel therapies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Thoracic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Marx A.
        • Chan J.K.C.
        • Chalabreysse L.
        • et al.
        The 2021 WHO classification of tumors of the thymus and mediastinum: what is new in thymic epithelial, germ cell, and mesenchymal tumors?.
        J Thorac Oncol. 2022; 17: 200-213
        • Travis W.D.
        • Brambilla E.
        • Muller-Hermelink H.K.
        • et al.
        Pathology and genetics: tumors of the lung, pleura, thymus and heart.
        in: Kleihues P. Sobin L.H. World Health Organization Classification of Tumours. IARC Press, Lyon, France2004: 145-247
        • Engels E.A.
        Epidemiology of thymoma and associated malignancies.
        J Thorac Oncol. 2010; 5: S260-S265
        • Anderson G.
        • Jenkinson E.J.
        • Rodewald H.R.
        A roadmap for thymic epithelial cell development.
        Eur J Immunol. 2009; 39: 1694-1699
        • Strobel P.
        • Hohenberger P.
        • Marx A.
        Thymoma and thymic carcinoma: molecular pathology and targeted therapy.
        J Thorac Oncol. 2010; 5: S286-S290
        • Kelly R.J.
        • Petrini I.
        • Rajan A.
        • Wang Y.
        • Giaccone G.
        Thymic malignancies: from clinical management to targeted therapies.
        J Clin Oncol. 2011; 29: 4820-4827
        • Okumura M.
        • Ohta M.
        • Tateyama H.
        • et al.
        The World Health Organization histologic classification system reflects the oncologic behavior of thymoma: a clinical study of 273 patients.
        Cancer. 2002; 94: 624-632
        • Conforti F.
        • Pala L.
        • Giaccone G.
        • De Pas T.
        Thymic epithelial tumors: from biology to treatment.
        Cancer Treat Rev. 2020; 86102014
        • Thomas A.
        • Rajan A.
        • Berman A.
        • et al.
        Sunitinib in patients with chemotherapy-refractory thymoma and thymic carcinoma: an open-label phase 2 trial.
        Lancet Oncol. 2015; 16: 177-186
        • Giaccone G.
        • Rajan A.
        • Berman A.
        • et al.
        Phase II study of Belinostat in patients with recurrent or refractory advanced thymic epithelial tumors.
        J Clin Oncol. 2011; 29: 2052-2059
        • Giaccone G.
        • Kim C.
        • Thompson J.
        • et al.
        Pembrolizumab in patients with thymic carcinoma: a single-arm, single-centre, phase 2 study.
        Lancet Oncol. 2018; 19: 347-355
        • Cho J.
        • Kim H.S.
        • Ku B.M.
        • et al.
        Pembrolizumab for patients with refractory or relapsed thymic epithelial tumor: an open-label Phase II trial.
        J Clin Oncol. 2019; 37: 2162-2170
        • Kondo K.
        • Monden Y.
        Therapy for thymic epithelial tumors: a clinical study of 1,320 patients from.
        Japan Ann Thorac Surg. 2003; 76: 878-885
        • Petrini I.
        • Meltzer P.S.
        • Kim I.K.
        • et al.
        A specific missense mutation in GTF2I occurs at high frequency in thymic epithelial tumors.
        Nat Genet. 2014; 46: 844-849
        • Higuchi R.
        • Goto T.
        • Hirotsu Y.
        • et al.
        Primary driver mutations in GTF2I specific to the development of thymomas.
        Cancers (Basel). 2020; 12: 2032
        • Kim I.K.
        • Rao G.
        • Zhao X.
        • et al.
        Mutant GTF2I induces cell transformation and metabolic alterations in thymic epithelial cells.
        Cell Death Differ. 2020; 27: 2263-2279
        • Willard-Mack C.L.
        • Elmore S.A.
        • Hall W.C.
        • et al.
        Nonproliferative and proliferative lesions of the rat and mouse hematolymphoid system.
        Toxicol Pathol. 2019; 47: 665-783
        • Rehg J.E.
        Mouse hematolymphoid neoplasms.
        in: John P. Sundberg P.V. Ward J.M. Pathology of Genetically Engineered and Other Mutant Mice. 1st ed. John Wiley & Sons, Inc, Chichester, United Kingdom2022
        • Benjamini Y.
        • Hochberg Y.
        Controlling the false discovery rate - a practical and powerful approach to multiple testing.
        J R Stat Soc B. 1995; 57: 289-300
        • Bukowska J.
        • Kopcewicz M.
        • Walendzik K.
        • Gawronska-Kozak B.
        Foxn1 in skin development, homeostasis and wound healing.
        Int J Mol Sci. 2018; 19: 1956
        • Lee E.N.
        • Park J.K.
        • Lee J.R.
        • et al.
        Characterization of the expression of cytokeratins 5, 8, and 14 in mouse thymic epithelial cells during thymus regeneration following acute thymic involution.
        Anat Cell Biol. 2011; 44: 14-24
        • Popa I.
        • Zubkova I.
        • Medvedovic M.
        • et al.
        Regeneration of the adult thymus is preceded by the expansion of K5+K8+ epithelial cell progenitors and by increased expression of Trp63, cMyc and Tcf3 transcription factors in the thymic stroma.
        Int Immunol. 2007; 19: 1249-1260
        • Sun X.
        • Xu J.
        • Lu H.
        • et al.
        Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo.
        Cell Stem Cell. 2013; 13: 230-236
        • Bergholtz H.
        • Carter J.M.
        • Cesano A.
        • et al.
        Best practices for spatial profiling for breast cancer research with the GeoMx((R)) digital spatial profiler.
        Cancers (Basel). 2021; 13: 4456
      1. Korotkevich G, Sukhov V, Budin N, et al. Fast gene set enrichment analysis. bioRxiv. Preprint. Posted online February 1, 2021. https://doi.org/10.1101/060012.

        • Subramanian A.
        • Tamayo P.
        • Mootha V.K.
        • et al.
        Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
        Proc Natl Acad Sci U S A. 2005; 102: 15545-15550
        • Benitez J.C.
        • Job B.
        • de Montpreville V.T.
        • et al.
        Cancer activation pathways of thymic epithelial tumors (TETs) by targeted gene expression analysis.
        J Clin Oncol. 2021; 39 (8575–8575)
        • Hanzelmann S.
        • Castelo R.
        • Guinney J.
        GSVA: gene set variation analysis for microarray and RNA-seq data.
        BMC Bioinformatics. 2013; 14: 7
        • Alberobello A.T.
        • Wang Y.
        • Beerkens F.J.
        • et al.
        PI3K as a potential therapeutic target in thymic epithelial tumors.
        J Thorac Oncol. 2016; 11: 1345-1356
        • Baran-Gale J.
        • Morgan M.D.
        • Maio S.
        • et al.
        Ageing compromises mouse thymus function and remodels epithelial cell differentiation.
        eLife. 2020; 9e56221
        • Nusser A.
        • Sagar S.J.B.
        • Swann J.B.
        • et al.
        Developmental dynamics of two bipotent thymic epithelial progenitor types.
        Nature. 2022; 606: 165-171
        • Pearse G.
        Histopathology of the thymus.
        Toxicol Pathol. 2006; 34: 515-547
        • Stutman O.
        • Yunis E.J.
        • Good R.A.
        Carcinogen-induced tumors of the thymus. I. Restoration of neonatally thymectomized mice with a functional thymoma.
        J Natl Cancer Inst. 1968; 41: 1431-1452
        • Hoot G.P.
        • Kettman J.R.
        Primary polyoma virus-induced murine thymic epithelial tumors. A tumor model of thymus physiology.
        Am J Pathol. 1989; 135: 679-695
        • Spanopoulou E.
        • Early A.
        • Elliott J.
        • et al.
        Complex lymphoid and epithelial thymic tumours in Thy1-myc transgenic mice.
        Nature. 1989; 342: 185-189
        • Lee S.S.
        • Park W.Y.
        • Chi J.G.
        • et al.
        Thymic epithelial tumor progression in an SV40T transgenic mouse model. Cortical thymoma-thymic carcinoma sequence.
        Virchows Arch. 1998; 432: 33-42
        • Scheijen B.
        • Bronk M.
        • van der Meer T.
        • De Jong D.
        • Bernards R.
        High incidence of thymic epithelial tumors in E2F2 transgenic mice.
        J Biol Chem. 2004; 279: 10476-10483
        • Radovich M.
        • Pickering C.R.
        • Felau I.
        • et al.
        The integrated genomic landscape of thymic epithelial tumors.
        Cancer Cell. 2018; 33: 244-258.e10
        • Yang Y.
        • Xue K.
        • Li Z.
        • et al.
        c-Myc regulates the CDK1/cyclin B1 dependent G2/M cell cycle progression by histone H4 acetylation in Raji cells.
        Int J Mol Med. 2018; 41: 3366-3378
        • Matsumura I.
        • Tanaka H.
        • Kanakura Y.
        E2F1 and c-Myc in cell growth and death.
        Cell Cycle. 2003; 2: 333-338
        • Ladu S.
        • Calvisi D.F.
        • Conner E.A.
        • Farina M.
        • Factor V.M.
        • Thorgeirsson S.S.
        E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer.
        Gastroenterology. 2008; 135: 1322-1332
        • Trimarchi J.M.
        • Lees J.A.
        Sibling rivalry in the E2F family.
        Nat Rev Mol Cell Biol. 2002; 3: 11-20
        • Leung J.Y.
        • Ehmann G.L.
        • Giangrande P.H.
        • Nevins J.R.
        A role for Myc in facilitating transcription activation by E2F1.
        Oncogene. 2008; 27: 4172-4179
        • Dong P.
        • Maddali M.V.
        • Srimani J.K.
        • et al.
        Division of labour between Myc and G1 cyclins in cell cycle commitment and pace control.
        Nat Commun. 2014; 5: 4750
        • Cowan J.E.
        • Malin J.
        • Zhao Y.
        • et al.
        Myc controls a distinct transcriptional program in fetal thymic epithelial cells that determines thymus growth.
        Nat Commun. 2019; 10: 5498
        • Engels E.A.
        • Pfeiffer R.M.
        Malignant thymoma in the United States: demographic patterns in incidence and associations with subsequent malignancies.
        Int J Cancer. 2003; 105: 546-551
        • Tomonari Y.
        • Sato J.
        • Kurotaki T.
        • Wako Y.
        • Kanno T.
        • Tsuchitani M.
        Thymomas and associated hyperplastic lesions in Wistar Hannover rats.
        Toxicol Pathol. 2019; 47: 129-137
        • Moore R.R.
        • Nagai H.
        • Miller R.A.
        • et al.
        Comparative incidences and biological outcomes for thymoma in various rat strains in National Toxicology Program studies.
        Toxicol Pathol. 2019; 47: 833-841