Abstract
Introduction
Methods
Results
Conclusions
Keywords
Introduction
Methods
Patients
Next-Generation Sequencing
Fluorescence In Situ Hybridization
TP53 Mutation Classification
Statistics
Results
Patients
KEAP1 and TP53 Mutation Status

Patients With Localized Disease (Stages I–IIIA)
Variants | Total, No. 1518 | Patients With TP53wt, No. (%) 706 | Patients With TP53mut, No. (%) 812 | p Value (Chi-Square) | Patients With TP53 Truncating Mutations, No. (%) 168 | Patients With TP53 “Other Mutations,” No. (%) 646 | p Value (Chi-Square) |
---|---|---|---|---|---|---|---|
Age at study entry (y) | 0.175 | 0.971 | |||||
≤50 | 63 (4.2) | 24 (3.4) | 39 (4.8) | 8 (4.8) | 31 (4.8) | ||
51–60 | 355 (23.4) | 156 (22.1) | 199 (24.5) | 40 (23.8) | 159 (24.7) | ||
>60 | 1100 (72.5) | 526 (74.5) | 574 (70.7) | 120 (71.4) | 454 (70.5) | ||
Sex | <0.001 | 0.193 | |||||
Male | 912 (60.1) | 391 (55.4) | 521 (64.2) | 115 (68.5) | 406 (62.8) | ||
Female | 606 (39.9) | 315 (44.6) | 291 (38.8) | 53 (31.5) | 240 (37.2) | ||
Histological type | <0.001 | 0.005 | |||||
LUAD | 1068 (70.4) | 594 (84.1) | 474 (58.4) | 82 (48.8) | 392 (60.9) | ||
LSCC | 450 (27.6) | 112 (15.9) | 338 (41.6) | 86 (51.2) | 252 (39.1) | ||
Smoking | 0.002 | 0.493 | |||||
Current | 141 (36.3) | 64 (31.4) | 77 (41.8) | 14 (33.3) | 63 (44.3) | ||
Former | 182 (46.9) | 98 (48.0) | 84 (45.7) | 22 (52.4) | 62 (43.7) | ||
Never | 65 (16.8) | 42 (20.6) | 23 (12.5) | 6 (14.3) | 17 (12.0) | ||
Unknown | 1130 | 502 | 628 | 126 | 502 | ||
N stage | 0.662 | 0.087 | |||||
N0 | 769 (52.7) | 354 (52.1) | 415 (53.2) | 76 (47.2) | 339 (54.8) | ||
N1–N3 | 691 (47.3) | 326 (47.9) | 365 (46.8) | 85 (52.8) | 280 (45.2) | ||
Unknown | 58 | 26 | 32 | 7 | 27 | ||
T stage | 0.416 | 0.144 | |||||
T1 | 414 (28.0) | 191 (27.6) | 223 (28.3) | 35 (21.5) | 188 (30.0) | ||
T2 | 559 (37.7) | 276 (39.9) | 283 (35.9) | 61 (37.4) | 222 (35.5) | ||
T3 | 304 (20.5) | 135 (19.5) | 171 (21.4) | 42 (25.8) | 127 (20.3) | ||
T4 | 204 (13.8) | 90 (13.0) | 114 (14.4) | 25 (15.3) | 89 (14.2) | ||
Unknown | 37 | 14 | 23 | 5 | 18 | ||
UICC stage | 0.577 | 0.041 | |||||
I | 452 (29.8) | 209 (29.6) | 243 (29.9) | 38 (22.6) | 206 (31.9) | ||
II | 421 (27.7) | 188 (26.6) | 233 (28.7) | 58 (34.5) | 176 (27.2) | ||
IIIA | 645 (42.5) | 309 (43.8) | 336 (41.4) | 72 (42.9) | 264 (40.9) | ||
EGFR | 0.002 | 0.131 | |||||
Wild type | 1383 (91.1) | 626 (88.9) | 757 (93.2) | 161 (95.8) | 596 (92.5) | ||
Mutant | 135 (8.9) | 80 (11.1) | 55 (6.8) | 7 (4.2) | 48 (7.5) | ||
BRAF V600E | 0.164 | 0.909 | |||||
Wild type | 1495 (98.5) | 692 (98.0) | 803 (98.9) | 166 (98.8) | 639 (98.9) | ||
Mutant | 23 (1.5) | 14 (2.0) | 9 (1.1) | 2 (1.2) | 7 (1.1) | ||
ALK or ROS | <0.001 | 0.252 | |||||
Wild type | 1490 (98.2) | 683 (96.7) | 807 (99.1) | 168 (100.0) | 639 (99.2) | ||
Transl. | 28 (1.8) | 23 (3.3) | 5 (0.9) | 0 (0.0) | 5 (0.8) | ||
KEAP1 | 0.522 | 0.119 | |||||
Wild type | 547 (83.0) | 277 (83.9) | 270 (82.1) | 57 (76.0) | 213 (83.9) | ||
Mutant | 112 (17.0) | 53 (16.1) | 59 (17.9) | 18 (24.0) | 41 (16.1) | ||
Unknown | 859 | 376 | 483 | 93 | 39 | ||
NFE2L2 | 0.016 | 0.729 | |||||
Wild type | 623 (94.5) | 319 (96.7) | 304 (92.4) | 70 (93.3) | 234 (92.1) | ||
Mutant | 36 (5.5) | 11 (3.3) | 25 (7.6) | 5 (6.7) | 20 (7.9) | ||
Unknown | 859 | 376 | 483 | 93 | 392 | ||
KRAS | <0.001 | 0.029 | |||||
Wild type | 1086 (75.5) | 428 (60.6) | 658 (81.0) | 146 (86.9) | 512 (79.5) | ||
Mutant | 432 (28.5) | 278 (39.4) | 154 (19.0) | 22 (13.1) | 132 (20.5) |
Survival of Patients With Localized Stage


Patients With Advanced Stage (UICC Stages IIIB–IV)
Variants | Total, No. 4779 | Patients With TP53wt, No. (%) 2346 | Patients With TP53mut, No. (%) 2433 | p Value (Chi-Square) | Patients With TP53 Truncating Mutations, No. (%) 509 | Patients With TP53 “Other Mutations,” No. (%) 1934 | p Value (Chi-Square) |
---|---|---|---|---|---|---|---|
Age at study entry (y) | 0.054 | 0.565 | |||||
≤50 | 416 (8.7) | 205 (8.7) | 211 (8.7) | 50 (9.8) | 161 (8.4) | ||
51–60 | 1212 (25.4) | 559 (23.8) | 653 (26.8) | 133 (26.2) | 520 (27.0) | ||
>60 | 3151 (65.9) | 1582 (67.4) | 1569 (64.5) | 325 (64.0) | 1244 (64.6) | ||
Sex | <0.001 | 0.926 | |||||
Male | 2688 (56.2) | 1246 (53.1) | 1442 (59.3) | 303 (59.4) | 1140 (59.2) | ||
Female | 2091 (43.8) | 1100 (46.9) | 991 (40.7) | 206 (40.6) | 785 (40.8) | ||
Histological type | <0.001 | 0.192 | |||||
LUAD | 3895 (81.5) | 2092 (89.2) | 1803 (74.1) | 365 (71.9) | 1438 (74.7) | ||
LSCC | 884 (18.5) | 254 (10.8) | 630 (25.9) | 143 (28.1) | 487 (25.3) | ||
Smoking | <0.001 | 0.665 | |||||
Current | 786 (45.3) | 364 (42.5) | 422 (48.1) | 91 (50.0) | 331 (47.6) | ||
Recent | 684 (39.4) | 328 (38.3) | 356 (40.5) | 75 (41.2) | 281 (40.4) | ||
Never | 265 (15.3) | 165 (19.2) | 100 (11.4) | 16 (8.8) | 84 (12.0) | ||
Unknown | 3044 | 1489 | 1555 | 326 | 1229 | ||
N stage | 0.167 | 0.627 | |||||
N0 | 584 (14.4) | 300 (15.2) | 284 (13.7) | 64 (14.4) | 220 (13.5) | ||
N1–N3 | 3466 (85.6) | 1673 (84.8) | 1793 (86.3) | 381 (85.6) | 1411 (86.5) | ||
Unknown | 730 | 373 | 357 | 64 | 293 | ||
T stage | 0.012 | 0.904 | |||||
T1 | 453 (11.0) | 209 (10.4) | 244 (11.6) | 49 (10.9) | 195 (11.8) | ||
T2 | 984 (23.9) | 522 (25.9) | 462 (21.9) | 98 (21.8) | 364 (22.0) | ||
T3 | 895 (21.7) | 413 (20.5) | 482 (22.9) | 108 (24.0) | 374 (22.6) | ||
T4 | 1792 (43.5) | 873 (43.3) | 919 (43.6) | 195 (43.3) | 724 (43.7) | ||
Unknown | 655 | 329 | 326 | 59 | 277 | ||
UICC TNM stage | <0.001 | 0.195 | |||||
IIIB | 884 (18.5) | 365 (15.6) | 519 (21.3) | 119 (23.4) | 400 (20.8) | ||
IV | 3895 (81.5) | 1981 (84.4) | 1914 (78.7) | 389 (76.6) | 1525 (79.2) | ||
EGFR | 0.726 | 0.375 | |||||
Wild type | 4170 (87.3) | 2043 (87.1) | 2127 (87.4) | 450 (88.6) | 1677 (87.1) | ||
Mutant | 609 (12.7) | 303 (12.9) | 306 (12.6) | 58 (11.4) | 248 (12.9) | ||
BRAF V600E | 0.228 | 0.363 | |||||
Wild type | 4704 (98.4) | 2304 (98.2) | 2400 (98.6) | 499 (98.2 ) | 1901 (98.8 ) | ||
Mutant | 75 (1.6) | 42 (1.8) | 33 (1.4) | 9 (1.8) | 24 (1.2) | ||
ALK or ROS | <0.001 | 0.497 | |||||
Wild type | 4624 (96.8) | 2235 (95.3) | 2389 (98.2) | 498 (97.8) | 1901 (98.3) | ||
Transl. | 155 (3.2) | 111 (4.7) | 44 (1.8) | 11 (2.2) | 33 (1.7) | ||
KEAP1 | 0.037 | 0.013 | |||||
Wild type | 1951 (82.6) | 955 (80.9) | 996 (84.2) | 183 (78.9) | 813 (85.5) | ||
Mutant | 412 (17.4) | 225 (19.1) | 187 (15.8) | 49 (21.1) | 138 (14.5) | ||
Unknown | 2416 | 1166 | 1250 | 277 | 983 | ||
NFE2L2 | <0.001 | 0.084 | |||||
Wild type | 2283 (96.6) | 1156 (98.0) | 1127 (95.3) | 216 (93.1) | 911 (95.8) | ||
Mutant | 80 (3.4) | 24 (2.0) | 56 (4.7) | 16 (6.9) | 40 (4.2) | ||
Unknown | 2416 | 1166 | 1250 | 277 | 983 | ||
KRAS | <0.001 | 0.045 | |||||
Wild type | 3268 (68.4) | 1415 (60.3) | 1853 (76.2) | 404 (79.5) | 1449 (75.3) | ||
Mutant | 1511 (31.6) | 931 (39.7) | 580 (23.8) | 104 (20.5) | 476 (24.7) |

Discussion
CRediT Authorship Contribution Statement
Acknowledgments
Supplementary Data
- Supplementary Figure 1
- Supplementary Figure 2
- Supplementary Figure 3
- Supplementary Figure 4
- Supplementary Figure 5
- Supplementary Tables
References
- Cancer statistics, 2020.CA Cancer J Clin. 2020; 70: 7-30
- Biomarker testing for patients with advanced non-small cell lung cancer: real-world issues and tough choices.Am Soc Clin Oncol Educ Book. 2019; 39: 531-542
- p53: 800 million years of evolution and 40 years of discovery.Nat Rev Cancer. 2020; 20: 471-480
- Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis.Cancer Res. 1994; 54: 4855-4878
- Mutations in the p53 gene occur in diverse human tumour types.Nature. 1989; 342: 705-708
- p53 mutations in human cancers.Science. 1991; 253: 49-53
- COSMIC: the Catalogue Of Somatic Mutations In Cancer.Nucleic Acids Res. 2019; 47: D941-D947
- A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation.Mol Cell. 2018; 71: 873
- Immunohistochemical correlates of TP53 somatic mutations in cancer.Oncotarget. 2016; 7: 64910-64920
- Mutant p53 gain-of-function in cancer.Cold Spring Harb Perspect Biol. 2010; 2a001107
- Transcription regulation by mutant p53.Oncogene. 2007; 26: 2202-2211
- When mutants gain new powers: news from the mutant p53 field.Nat Rev Cancer. 2009; 9: 701-713
- Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis.Proc Natl Acad Sci U S A. 2003; 100: 8424-8429
- Mutational processes shape the landscape of TP53 mutations in human cancer.Nat Genet. 2018; 50: 1381-1387
- Clinical outcomes and correlates of TP53 mutations and cancer.Cold Spring Harb Perspect Biol. 2010; 2: a001016
- TP53 mutation is associated with a poor clinical outcome for non-small cell lung cancer: evidence from a meta-analysis.Mol Clin Oncol. 2016; 5: 705-713
- Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer.J Clin Oncol. 2007; 25: 5240-5247
- Influence of TP53 mutation on survival in patients with advanced EGFR-mutant non-small-cell lung cancer.JCO Precis Oncol. 2018; 2018 (PO.18.00107)
- Pooled analysis of the prognostic and predictive effects of TP53 comutation status combined with KRAS or EGFR mutation in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy.J Clin Oncol. 2017; 35: 2018-2027
- Nondisruptive p53 mutations are associated with shorter survival in patients with advanced non-small cell lung cancer.Clin Cancer Res. 2014; 20: 4647-4659
- Prognostic and predictive markers of benefit from adjuvant chemotherapy in early-stage non-small cell lung cancer.J Thorac Oncol. 2009; 4: 891-910
- Prognostic and predictive effect of TP53 mutations in patients with non-small cell lung cancer from adjuvant cisplatin-based therapy randomized trials: a LACE-bio pooled analysis.J Thorac Oncol. 2016; 11: 850-861
- TP53 mutations and survival in squamous-cell carcinoma of the head and neck.N Engl J Med. 2007; 357: 2552-2561
- Role of KEAP1/NFE2L2 mutations in the chemotherapeutic response of patients with non-small cell lung cancer.Clin Cancer Res. 2020; 26: 274-281
- Plasma tumor mutation burden and response to pembrolizumab—response.Clin Cancer Res. 2020; 26: 3492
- Clinical and pathological characteristics of KEAP1- and NFE2L2-mutated non-small cell lung carcinoma (NSCLC).Clin Cancer Res. 2018; 24: 3087-3096
- STK11 and KEAP1 mutations as prognostic biomarkers in an observational real-world lung adenocarcinoma cohort.ESMO Open. 2020; 5e000706
- A systematic review of p53 regulation of oxidative stress in skeletal muscle.Redox Rep. 2018; 23: 100-117
- Mutations in the KEAP1-NFE2L2 pathway define a molecular subset of rapidly progressing lung adenocarcinoma.J Thorac Oncol. 2019; 14: 1924-1934
- Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells.Oncotarget. 2018; 9: 20508-20523
- Does Nrf2 contribute to p53-mediated control of cell survival and death?.Antioxid Redox Signal. 2012; 17: 1670-1675
- p53 suppresses the Nrf2-dependent transcription of antioxidant response genes.J Biol Chem. 2006; 281: 39776-39784
- ALK evaluation in the world of multiplex testing: Network Genomic Medicine (NGM): the Cologne model for implementing personalised oncology.Ann Oncol. 2016; 27: iii25-iii34
- Mutational spectrum of acquired resistance to reversible versus irreversible EGFR tyrosine kinase inhibitors.BMC Cancer. 2020; 20: 408
- Implementation of amplicon parallel sequencing leads to improvement of diagnosis and therapy of lung cancer patients.J Thorac Oncol. 2015; 10: 1049-1057
- Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer.Nat Genet. 2012; 44: 1104-1110
- Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.Sci Signal. 2013; 6: pl1
- The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.Cancer Discov. 2012; 2: 401-404
- A note on quantifying follow-up in studies of failure time.Control Clin Trials. 1996; 17: 343-346
- Stage III lung cancer: two or three modalities? The continued role of thoracic radiotherapy.Oncology (Williston Park). 2006; 20: 1210-1225
- Prognostic significance of truncating TP53 mutations in head and neck squamous cell carcinoma.Clin Cancer Res. 2011; 17: 3733-3741
- TP53 exon-6 truncating mutations produce separation of function isoforms with pro-tumorigenic functions.eLife. 2016; 5e17929
- Micrometastatic p53-positive cells in the lymph nodes of early stage epithelial ovarian cancer: prognostic significance.Oncology. 2001; 60: 170-175
- A formal perturbation equation between genotype and phenotype determines the evolutionary action of protein-coding variations on fitness.Genome Res. 2014; 24: 2050-2058
- Mutations in Keap1 are a potential prognostic factor in resected non-small cell lung cancer.J Surg Oncol. 2010; 101: 500-506
- Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features.Clin Cancer Res. 2010; 16: 3743-3753
- STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma.Cancer Discov. 2018; 8: 822-835
- Impact of KRAS and TP53 co-mutations on outcomes after first-line systemic therapy among patients with STK11-mutated advanced non-small-cell lung cancer.JCO Precis Oncol. 2019; 3 (PO.18.00326)
- Loss-of-function mutations in KEAP1 drive lung cancer progression via KEAP1/NRF2 pathway activation.Cell Commun Signal. 2020; 18: 98
- Mutant p53R273H attenuates the expression of phase 2 detoxifying enzymes and promotes the survival of cells with high levels of reactive oxygen species.J Cell Sci. 2012; 125: 5578-5586
- Comparison of conventional TNM and novel TNMB staging systems for non-small cell lung cancer.JAMA Netw Open. 2019; 2e1917062
- A practical molecular assay to predict survival in resected non-squamous, non-small-cell lung cancer: development and international validation studies.Lancet. 2012; 379: 823-832
- Molecular testing for early lung cancer.Arch Pathol Lab Med. 2018; 142: 794-795
- Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group.Ann Oncol. 2020; 31: 1491-1505
- Adjuvant systemic therapy and adjuvant radiation therapy for stages I to IIIA resectable non-small-cell lung cancers: American Society of Clinical Oncology/Cancer Care Ontario Clinical Practice Guideline Update Summary.J Oncol Pract. 2017; 13: 449-451
- Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE collaborative group.J Clin Oncol. 2008; 26: 3552-3559
- Mutant p53 in cancer progression and targeted therapies.Front Oncol. 2020; 10: 595187
- Targeting mutant p53 in cancer: a long road to precision therapy.FEBS J. 2017; 284: 837-850
- Mutant p53 as a target for cancer treatment.Eur J Cancer. 2017; 83: 258-265
- Association of patient characteristics and tumor genomics with clinical outcomes among patients with non-small cell lung cancer using a clinicogenomic database.JAMA. 2019; 321: 1391-1399
- Comparison of population-based observational studies with randomized trials in oncology.J Clin Oncol. 2019; 37: 1209-1216
- Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT).Lancet. 2016; 387: 1415-1426
- How serious is bias in effect estimation in randomised trials with survival data given risk heterogeneity and informative censoring?.Stat Med. 2017; 36: 3315-3333
- The isoforms of the p53 protein.Cold Spring Harb Perspect Biol. 2010; 2: a000927
- p53 isoforms and their implications in cancer.Cancers (Basel). 2018; 10: 288
- Cancer statistics, 2019.CA Cancer J Clin. 2019; 69: 7-34
Article info
Publication history
Footnotes
Drs. Saleh and Scheffler contributed equally to this work.
Disclosure: Dr. Buettner reports receiving honoraria for lectures and serving on the advisory boards from AbbVie, Amgen, AstraZeneca, Bayer, Bristol-Myers Squibb, Boehringer Ingelheim, Illumina, Janssen, Lilly, Merck-Serono, Merck Sharp & Dohme, Novartis, Qiagen, Pfizer, Roche, and Targos MP Inc. Dr. Merkelbach-Bruse reports receiving personal fees from AstraZeneca, Roche, Novartis, GlaxoSmithKline, Merck Sharp & Dohme, Targos, Molecular Health, and Merck and personal fees and nonfinancial support from Janssen and Bristol-Myers Squibb. Dr. Scheffler reports receiving honoraria and serving on the advisory boards from Amgen, Boehringer Ingelheim, Novartis, Pfizer, Roche, and Takeda. Dr. Wolf reports receiving grants from Amgen, AstraZeneca, Bayer, Blueprint, BMS, Boehringer-Ingelheim, Chugai, Daiichi Sankyo, Ignyta, Janssen, Lilly, Loxo, MSD, Novartis, Pfizer, Roche, Seattle Genetics, and Takeda. The remaining authors declare no conflict of interest.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy