Circulating Tumor DNA Analysis for Patients with Oncogene-Addicted NSCLC With Isolated Central Nervous System Progression

Mihaela Aldea, MD, PhD, a Lizza Hendriks, MD, PhD, b Laura Mezquita, MD, PhD, a Cécile Jovelet, PharmD, PhD, c David Planchard, MD, PhD, a Edouard Auclun, MD, PhD, c Jordi Remon, MD, a, e Karen Howarth, PhD, f Jose Carlos Benitez, MD, a, g Anas Gazzah, MD, h Pernelle Lavaud, MD, a Charles Naltet, MD, c Ludovic Lacroix, PharmD, PhD, c Frank de Kievit, BAS, f Clive Morris, MD, MBA, f Emma Green, f Maud Ngo-Camus, h Caroline Caramella, MD, i Luc Friboulet, PhD, j, k Benjamin Besse, MD, PhD, a, k, *

*Corresponding author.

Disclosure: Dr. Hendriks has received research funding from Roche, Boehringer Ingelheim, and AstraZeneca (all institution); has served on the advisory board for Boehringer, BMS, Lilly, and Roche (all institution, BMS also self); has received travel/conference reimbursement from Roche and BMS (self); participated in mentorship program with key opinion leaders that was funded by AstraZeneca; and has received fees for educational webinars from Quidia (self). Dr. Mezquita has provided consulting and advisory role for Roche Diagnostics; provided lectures and educational activities for Bristol-Myers Squibb, Tecnofarma, Roche, and AstraZeneca; and has received travel, accommodations, and expenses from Chugai. Dr. Planchard has provided consulting, advisory role, or lectures for Abbvie, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Ca Bayer Healthcarer, Illumina, Genomic Health, Myriad, Novartis, Pfizer, Roche, Siemens, Thermofisher, and VelaDx. Drs. de Kievit, Morris, and Green are employees and shareholders of Inivata. Dr. Rouleau served on the Board for BMS, AstraZeneca, and Roche. Dr. Massard has received consultant/advisory fees from Amgen, Astellas, Astra Zeneca, Bayer, BeInGene, BMS, Celgene, Debiopharm, Genentech, Ipsen, Janssen, Lilly, MedImmune, MSD, Novartis, Pfizer, Roche, Sanofi, and Orion; and is the principal/subinvestigator of clinical trials for Abbvie, Aduro, Agios, Amgen, Argen-x, Astex, AstraZeneca, Avezopharmaceuticals, Bayer, BeInGene, Blueprint, BMS, Boehringer Ingelheim, Cello, Chugai, Clovis, Dalichi Sankyo, Debiopharm, Elsi, Eos, Exelixis, Forma, Gamamabs, Genentech, Gortec, GSK, H3 biomedicine, Incyte, InnatePharma, Janssen, Kura Oncology, Kyowa, Lilly, Loxo, Lysarc, LytixBiopharma, Medimmune, Menarini, Mersus, MSD, Nanobiotix, NektarTherapeutics, Novartis, Ocitinet, Oncoethix, OncoproteptidesAB, Orin, Pfizer, Pharmammar, Pierre Fabre, Roche, Sanofi, Servier, Sierra Oncology, Taiho, Takeda, Tesaro, and Xencor. Dr. Besse reports sponsored research at Gustave Roussy Cancer Center from Abbvie, Amgen, AstraZeneca, Biogen, Blueprint Medicines, BMS, Celgene, Eli Lilly, GSK, Ignyta, IPSEN, Merck KGAa, MSD, Nektar, Onxeo, Pfizer, Pharma Mar, Sanofi, Spectrum Pharmaceuticals, Takeda, and Tiziana Pharma; and is an investigator or co-investigator of trials for Nerviano, GSK, Pfizer, Roche-Genentech, Lilly, OSE Pharma, MSD, Cello, Genezen, Stemcentrx, Ignyta, Abbvie, Loxo Oncology, AstraZeneca, and Blueprint Medicines. The remaining authors declare no conflict of interest.

Presented in part at the European Lung Cancer Congress (ELCC) in Geneva, Switzerland, on April 10-13, 2019, and at the ASCO Annual Meeting in Chicago on May 31, 2019, to June 4, 2019.

Address for correspondence: Benjamin Besse, MD, PhD, Department of Cancer Medicine, Gustave Roussy Cancer Centre, Villejuif, France.

E-mail: benjamin.besse@gustaveroussy.fr

© 2019 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

ISSN: 1556-0864

https://doi.org/10.1016/j.jtho.2019.11.024
Patients and Samples

Patients with NSCLC were prospectively enrolled in a study evaluating liquid biopsy (NCT02666612) from January 2016 to November 2018 at Gustave Roussy.

Materials and Methods
Cases were selected for our study on the basis of the following inclusion criteria: (1) stage IV disease; (2) known tissue GA at baseline in EGFR, ALK, BRAF, KRAS, HER2, ROS1, MET, PIK3CA, STK11, or TP53; and (3) at least one liquid biopsy collected at baseline or at the time of disease progression and successfully analyzed by next-generation sequencing (NGS) with InVisionFirst-Lung assay.

Eligible patients were stratified in three groups: (1) iCNS: isolated CNS progression while stable or no extra-CNS disease; (2) noCNS: extra-CNS progression and no CNS involvement; and (3) cCNS: CNS involvement and extra-CNS progression (Table 1).

Radiologic assessment consisted of at least one extra-CNS and one CNS imaging method (body computed tomography [CT] scan or positron emission tomography-CT scan, and brain magnetic resonance imaging [MRI], brain CT scan, and/or spinal MRI). Leptomeningeal disease was diagnosed by cerebrospinal fluid (CSF) cytology or a combination of compatible clinical symptoms and typical MRI findings. Disease progression was assessed per investigator’s criteria. For leptomeningeal involvement, a neurologic aggravation was considered as clinical progression.

Liquid biopsy was performed at baseline and/or at disease progression, within 1 month of the radiologic assessment, resulting in serial plasma ctDNA results for a limited number of patients. CSF were collected when available.

Clinical, pathologic, molecular, and imaging data were retrospectively collected.

Genomic Profiling of ctDNA

Blood (10–20 mL) was collected in ethylenediaminetetraacetic acid or Cell-Free DNA BCT STRECK tubes. Plasma was isolated using a standard operating procedure, and ctDNA analysis was centralized (Inivata, Cambridge, UK, and Research Triangle Park, Durham, NC) using InVisionFirst-Lung, a tagged amplicon-based NGS comprehensive genomic profiling assay that identifies single nucleotide variants, insertions and deletions, copy number variations, and fusions (variant 1 to 3 of EML4-ALK fusions and CD74-, SLC34A2-, SDC4-, and E2R-ROS1) with whole gene and gene hotspots across a 36-gene panel (Supplementary Fig. 1); methods were previously described.3,13,14

Table 1. Patients' Stratification According to Their Disease Evolution Pattern

<table>
<thead>
<tr>
<th>Groups</th>
<th>CNS Progression</th>
<th>Extra-CNS Progression</th>
</tr>
</thead>
<tbody>
<tr>
<td>iCNS</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>noCNS</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>cCNS</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

*Stable CNS disease was also allowed in cCNS group.

CSF ctDNA was performed from 2 mL of CSF. Samples were analyzed by direct sequencing (EGFR exon 19, 20, 21, 18) or NGS (Sentosa NSCLC Panel, Vela Diagnostics, Singapore) at Gustave Roussy.

Outcomes

The primary objective of the study was to determine the proportion of patients with positive ctDNA, defined as the identification of at least one somatic GA of known pathogenicity, irrespective of its mutant allele fraction (MAF%).

Identified GAs were categorized under the following: actionable drivers (EGFR exon 19, 21, 18 and exon 20 insertion, BRAF, HER2 exon 20 insertion, MET exon 14 skipping mutations, ALK and ROS1 rearrangements), resistance alterations (EGFR T790M, EGFR C797S/G, EGFR G729S/V, EGFR L747P, ALK mutations, MET D1246N, EGFR, MET, and HER2 amplifications), or other GA (e.g., KRAS/NRAS/HRAS, MAPK, TP53, STK11, PIK3CA). GAs were considered actionable if treatment options were available within an FDA/EMA approval or ongoing clinical trials at our institution.

For positive plasma ctDNA, comparisons among MAF % in the different groups were performed. When more than one GA was detected per sample, the highest MAF% was selected for analysis.

For the iCNS group, the occurrence of an extra-CNS progression and the subsequent development of a CNS progression were evaluated. Extra-CNS progression-free survival (PFS) and CNS PFS were calculated and compared between patients with negative and positive iCNS ctDNA.

Statistical Analysis

Statistical analyses were performed using R-Studio version 3.5.2 and IBM SPSS Statistics 20. Median (interquartile-range) values and proportions (percentage) were provided for the description of continuous and categorical variables, respectively. Mean and proportions were compared using t test (or ANOVA if appropriate) and chi-square test (or Fisher’s exact test, if appropriate), respectively.

The association between clinical or molecular variables and ctDNA positivity was explored with a logistic regression. First, a univariate analysis was performed. All variables reaching a p value less than 0.1 were included in a multivariable. Any p value less than 0.05 was considered statistically significant.

Extra-CNS PFS and CNS PFS were defined as the time between the date of ctDNA collection and extra-CNS and CNS disease progression, respectively. Median PFS was estimated with the Kaplan-Meier method and compared with the log-rank test. The median follow-up was calculated with the reverse Kaplan-Meier method.
Results

Patient Selection and Characteristics

Between January 2016 and June 2018, 517 patients with NSCLC had at least one plasma ctDNA extracted, and 247 had an InVisionFirst-Lung analysis collected at baseline or at disease progression. A total of 302 plasma samples were available (Fig. 1 – Flowchart), 54 patients had iCNS (64 samples), 99 had noCNS (128 samples), and 94 had cCNS (110 samples).

Table 2. Patients Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>iCNS (n = 54 pts)</th>
<th>noCNS (n = 99 pts)</th>
<th>cCNS (n = 94 pts)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at first-line treatment</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.001</td>
</tr>
<tr>
<td>Median (y), range (min, max)</td>
<td>59 (23-83)</td>
<td>65 (23-89)</td>
<td>59 (26-75)</td>
<td>—</td>
</tr>
<tr>
<td>Sex</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.072</td>
</tr>
<tr>
<td>Male</td>
<td>14 (26%)</td>
<td>40 (40%)</td>
<td>42 (45%)</td>
<td>—</td>
</tr>
<tr>
<td>Female</td>
<td>40 (74%)</td>
<td>59 (60%)</td>
<td>52 (55%)</td>
<td>—</td>
</tr>
<tr>
<td>History of smoking</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.694</td>
</tr>
<tr>
<td>Never/light smoker (<15 PY)</td>
<td>41 (76%)</td>
<td>67 (68%)</td>
<td>64 (68%)</td>
<td>—</td>
</tr>
<tr>
<td>Smoker more or equal to 15 PY</td>
<td>13 (24%)</td>
<td>28 (28%)</td>
<td>28 (30%)</td>
<td>—</td>
</tr>
<tr>
<td>Histology</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.151</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>53 (98%)</td>
<td>89 (90%)</td>
<td>88 (94%)</td>
<td>—</td>
</tr>
<tr>
<td>Squamous carcinoma</td>
<td>0 (0%)</td>
<td>3 (3%)</td>
<td>2 (2%)</td>
<td>—</td>
</tr>
<tr>
<td>Other</td>
<td>1 (2%)</td>
<td>7 (7%)</td>
<td>4 (4%)</td>
<td>—</td>
</tr>
<tr>
<td>GA at baseline tissue biopsies</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>EGFR mutation exon 19, 21, 18</td>
<td>28 (51%)</td>
<td>38 (38%)</td>
<td>43 (46%)</td>
<td>—</td>
</tr>
<tr>
<td>exon 20 insertions</td>
<td>0 (0%)</td>
<td>4 (4%)</td>
<td>2 (2%)</td>
<td>—</td>
</tr>
<tr>
<td>ALK fusion</td>
<td>17 (31%)</td>
<td>8 (8%)</td>
<td>12 (13%)</td>
<td>—</td>
</tr>
<tr>
<td>BRAF V600E mutation</td>
<td>2 (4%)</td>
<td>15 (15%)</td>
<td>8 (9%)</td>
<td>—</td>
</tr>
<tr>
<td>KRAS mutation</td>
<td>3 (6%)</td>
<td>17 (17%)</td>
<td>11 (12%)</td>
<td>—</td>
</tr>
<tr>
<td>ROS1 fusion</td>
<td>2 (4%)</td>
<td>4 (4%)</td>
<td>4 (4%)</td>
<td>—</td>
</tr>
<tr>
<td>HER2 mutation</td>
<td>1 (2%)</td>
<td>3 (3%)</td>
<td>7 (7%)</td>
<td>—</td>
</tr>
<tr>
<td>MET mutation</td>
<td>0 (0%)</td>
<td>2 (2%)</td>
<td>2 (2%)</td>
<td>—</td>
</tr>
<tr>
<td>PIK3CA mutation</td>
<td>1 (2%)</td>
<td>3 (3%)</td>
<td>1 (1%)</td>
<td>—</td>
</tr>
<tr>
<td>Other (TP53 only, STK11)</td>
<td>0 (0%)</td>
<td>5 (5%)</td>
<td>4 (4%)</td>
<td>—</td>
</tr>
<tr>
<td>Number of metastatic sites at baseline</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.005</td>
</tr>
<tr>
<td>Median, range</td>
<td>1 (1-5)</td>
<td>2 (1-6)</td>
<td>2 (1-6)</td>
<td>—</td>
</tr>
<tr>
<td>CNS involvement at baseline, yes</td>
<td>38 (70%)</td>
<td>NA</td>
<td>66 (70%)</td>
<td>0.983</td>
</tr>
</tbody>
</table>

CNS, central nervous system; GA, genomic alterations; NA, not applicable; pts, patients; PY, pack-year; y, years.
and 94 had cCNS (110 samples). Patients’ and samples’ characteristics are depicted in Table 2 and Supplementary Table 1.

The iCNS group included 22 patients with CNS-restricted metastases and 32 patients with isolated CNS progression. Leptomeningeal involvement was more common in the iCNS group compared with the cCNS group (36% versus 10%, \(p < 0.0001 \)). The patients with CNS metastases (iCNS and cCNS groups) were younger, were more likely to have ALK+ adenocarcinoma, and had in 70% of the cases the CNS lesions present at diagnosis (Table 2). Patients with systemic progression had more metastatic sites at diagnosis of advanced disease (2 versus 1) and at the moment of sample collection (3 versus 2), and more failure sites (2 versus 1) (\(p < 0.001 \), Supplementary Table 1).

The genomic landscape of the overall populations included 46% EGFR mutations, 15% ALK fusions, 13% KRAS, 10% BRAF, 4% HER2 alterations, 4% ROS1 fusions, and in smaller percentages, MET alterations, PI3KCA, STK11, and TP53 mutations (Table 2). Diversity of GA in the systemic progression group was higher than that in the iCNS group, with a higher prevalence of ALK rearrangements in iCNS than in noCNS/cCNS (31% versus 8% versus 13%, \(p < 0.01 \)) (Fig. 2).

iCNS progression was observed in 72% after first-generation TKI, in 23% after second-generation TKI, and in 5% after third-generation TKI (Supplementary Table 1).

Plasma ctDNA Positivity and CNS Invasion

Plasma ctDNA was positive in 52% in iCNS versus 84% in noCNS and 92% in cCNS (\(p < 0.00001 \)) (Fig. 3, Table 3).

In iCNS compared with noCNS/cCNS, the performance of ctDNA analysis was lower for the detection of drivers (\(p < 0.00001 \), resistance mutation (\(p = 0.00001 \)), and for other GAs (\(p < 0.00001 \)). In line with these results, the detection of EGFR T790M resistance mutation was also significantly lower in patients with progressive iCNS compared with other groups (\(p = 0.0002 \) (Table 3). There was a slight tendency of the occurrence of more comutations across cCNS/noCNS (75%) compared with iCNS (61%), however without reaching statistical significance (\(p = 0.09 \)).

Serial samples were available for 18 patients in the iCNS group (Supplementary Fig. 2). In seven of 18 cases (38.8%), a negative ctDNA at the time of iCNS shifted to positive when the patient had a systemic progression.

The number of metastatic sites (>2) at sample collection was independently associated with a positive ctDNA in multivariate analysis (odd ratio = 3.4, 95% confidence interval [CI]: 1.7–7.2, \(p = 0.001 \)) (data of univariate analysis are depicted in Supplementary Table 2). The median of MAF% was lower in iCNS group (1% versus 2.7% noCNS and 9.4% cCNS, \(p < 0.00001 \)) (Supplementary Fig. 3).

Clinical Outcomes of Patients With Positive ctDNA in the iCNS Group

In the iCNS group, median follow-up was 36.5 months (95% CI: 31–not reached [NR]). Subsequent CNS progression occurred more frequently than extra-CNS progression (79% versus 19%, \(p < 0.0001 \)). Positive ctDNA was more frequently associated with a subsequent extra-CNS progression compared with negative ctDNA (32% versus 7%, \(p = 0.026 \), although there were no differences in the clinical characteristics of the two groups. In addition, we did not observe any correlation between positive samples and the burden of CNS disease (we considered multiple brain metastases/leptomeningeal disease as high CNS tumor burden) (\(p = 0.93 \). The median time to the occurrence of extra-CNS progression was shorter in the positive ctDNA group: 5.5 months (95% CI: 3.22–23)
versus NR in negative ctDNA (95% CI: 6.31–NR) (log-rank 0.02).

Paired Plasma–CSF ctDNA

In the iCNS group, paired plasma–CSF liquid biopsies were available for 12 patients (11 with leptomeningeal progression and one with brain progression). Cytology in CSF was positive in all cases with leptomeningeal involvement. Samples were collected from patients with known EGFR mutations (n = 11) and one patient with ALK rearrangement. Plasma ctDNA was positive in six patients (50%), versus 10 patients (83%) in whom tumor mutations were detected in paired CSF samples (p = 0.193).

Discussion

We evaluated the clinical utility of plasma ctDNA in patients with oncogene-addicted NSCLC with isolated CNS progression using a highly sensitive NGS assay. The detection rate of 52% positive ctDNA in patients with iCNS was significantly lower than in patients with noCNS or cCNS, 84% and 92%, respectively. However, 52% positive ctDNA is relatively high compared with results previously reported by De Mattos Arruda et al., in which no GAs were detected in a limited number of patients (n = 7, including primary brain tumors). One possible explanation is the cutoff of 2% MAF used in the study of De Mattos Arruda et al., compared with a higher sensitivity assay (as low as 0.02%) in our study.

Our results are in line with a study in patients with primary brain tumors (N = 419) in which the rate of positive ctDNA was 51% with the Guardant360 assay. Another study using the Guardant360 assay evaluated patients with NSCLC with brain metastases and GAs were found in 75% of 12 cases, but the status of extra-CNS disease was unknown. To our knowledge, our study is the largest that evaluates isolated CNS progression in a cohort of patients with various known baseline GAs: EGFR, ALK, BRAF, HER2, KRAS, MET, PIK3CA, STK11, and TP53.

Isolated CNS progression mostly occurs in patients with oncogenic drivers when TKIs are used with

Table 3. Prevalence of GA in Plasma ctDNA Samples

<table>
<thead>
<tr>
<th>Type of GA</th>
<th>iCNS</th>
<th>noCNS</th>
<th>cCNS</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (all)</td>
<td>52% (33/64)</td>
<td>84% (108/128)</td>
<td>92% (101/110)</td>
<td><0.00001</td>
</tr>
<tr>
<td>Actionable drivers (EGFR, ALK, BRAF, HER2, ROS1, MET)</td>
<td>37% (22/60)</td>
<td>77% (79/102)</td>
<td>73% (67/92)</td>
<td><0.00001</td>
</tr>
<tr>
<td>Resistance (all EGFR, ALK, MET at progression)</td>
<td>6% (3/50)</td>
<td>45% (18/40)</td>
<td>44% (23/52)</td>
<td>0.00001</td>
</tr>
<tr>
<td>EGFR T790M in EGFR patients at progression</td>
<td>7% (2/30)</td>
<td>48% (16/33)</td>
<td>50% (20/40)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Other</td>
<td>31% (20/64)</td>
<td>65% (83/128)</td>
<td>68% (75/110)</td>
<td><0.00001</td>
</tr>
</tbody>
</table>

*positive ctDNA only.

insufficient CNS penetration. Another cause could be the supposed CNS tropism of some oncogenic drivers such as ALK rearrangements. In our iCNS cohort, ALK rearrangement was detected in a higher frequency compared with patients with systemic progression as most patients were on crizotinib. This is consistent with other studies that report a high CNS tropism for patients with ALK rearrangements, reaching a risk of CNS disease of 58% at 3 years and 70% at progression during crizotinib treatment.

Importantly, plasma ctDNA detected a very low percentage of resistance mutations (6%) in patients with iCNS, compared with more than 40% in patients with systemic progression, for patients with alterations in EGFR, ALK, or MET. This is in line with the results of Zhang et al., in a prospective observational study of patients with EGFR-mutated NSCLC failing first-generation TKI (n = 307). EGFR T790M resistance mutation, assessed by plasma ddPCR, was less frequently detected in patients with progression limited to the brain (n = 32) than other sites (21.9% versus 72.3% respectively, p < 0.001). Interestingly, they reported that the resistance mutation was less likely to be detected in patients with disease limited to the chest (40.6%). The main hypothesis is that the tumor burden drives the quantity of ctDNA released into the blood. This is supported by the correlation between the number of tumor sites and the positivity of ctDNA in our study and others. This might also explain why plasma positivity of iCNS patients is related to higher number of patients with subsequent extra-CNS progression in our study. It is likely that ctDNA is released by infraradiologic lesions that subsequently become detectable. It has also been hypothesized that reduced CNS drug penetration and low exposure of first-generation TKI in CSF might cause a different tumor selection in the CNS with the possibility of retaining sensitizing mutations or with the development of different resistance mechanisms. This might explain the different prevalence of EGFR T790M that has been reported within studies that compared CSF with plasma.

The reliability of GA detection by plasma ctDNA was assessed also by the comparison between paired plasma–CSF samples. There were more positive samples in CSF compared with plasma (10 versus 6), although not statistically significant, possibly because of the small sample number (n = 12). This was in line with other studies that specifically compared CSF with plasma ctDNA and found that CSF ctDNA had higher mutation detection rates and higher MAF%, including patients with NSCLC with CNS-unrestricted metastases (n = 72). EGFR (n = 26) and ALK cohorts (n = 11). Moreover, more unique mutations, including a higher number of acquired resistance mutations, were identified in CSF than in plasma. Indeed, in patients with low levels of ctDNA, mutations may be more easily detected in CSF as the tumor/normal DNA ratio is higher in CSF compared with plasma. This is due to low levels of non–tumor derived DNA in CSF.

The main limitation of our study is the absence of a comparison with the accepted standard tissue biopsy- derived genomic profile, which for the iCNS subgroup is not feasible to obtain. Other study limitations included the retrospective collection of data (however, patients were included in a prospective study at our institution), the limited number of paired CSF samples, and the fact that it was not possible to distinguish between ctDNA and circulating free DNA in the absence of an identified GA. Thus, correlations between positive/negative samples and ctDNA concentrations were not possible. Another limitation is that InVisionFirst-Lung does not identify all kind of ROS1 and ALK fusions, leaving rarer partners or variants uncovered if present (e.g., EML4-ALK V4, 5, 6, other than EML4 partner fusion). This might result in false-negative liquid biopsies in the ALK/ROS1 subgroup; however, it is unlikely that this would considerably affect the results, because such variants have a small prevalence in NSCLC. Alternative strategies should be explored in patients with isolated CNS progression. CSF cell-free DNA analysis seems highly promising; however, its role in characterizing patients with asymptomatic and with limited brain lesions is less clear and might also be challenged by low tumor-derived DNA levels in CSF. As in several countries, first-line osimertinib is not yet reimbursed and the presence of the EGFR T790M resistance mutation remains mandatory for the use of osimertinib in second- line treatment; therefore, better detection methods for T790M or other treatment approaches are needed. In the absence of resistance mutations after first- and second- generation TKIs, an interesting strategy would also be the investigation of plasma and CSF TKI concentrations, which could guide intrapatient drug dosage escalations.

Conclusions

Although tagged amplicon-based NGS has high detection rates of GA in plasma ctDNA in patients with NSCLC with extra-CNS disease, detection rate of GA (52%) is lower in the subset of patients with iCNS disease. Complementary tests such as CSF cell-free DNA assay may be useful. Further evidence would be beneficial to understand the genomic landscape in patients with NSCLC and iCNS.

Acknowledgments

INIVATA has provided the funding/cost of genomic analyses.
Dr. Aldea has been a recipient of one of the 2019 ASCO Annual Meeting Merit Awards granted by the ASCO Foundation, Conquer Cancer.

Supplementary Data
Note: To access the supplementary material accompanying this article, visit the online version of the Journal of Thoracic Oncology at www.jto.org and at https://doi.org/10.1016/j.jtho.2019.11.024.

References

