Defining Synchronous Oligometastatic Non-Small Cell Lung Cancer: A Systematic Review

Niccolò Giaj-Levra, MD, PhD,a,b Matteo Giaj-Levra, MD, PhD,b,c,* Valerie Durieux, PhD,d Silvia Novello, MD, PhD,e Benjamin Besse, MD, PhD,f Baktiar Hasan, PhD,g Lizza E. Hendriks, MD, PhD,b,h Antonin Levy, MD, PhD,b,i Anne-Marie C. Dingemans, MD, PhD,h Thierry Berghmans, MD, PhD,j on behalf of the European Organization for Research and Treatment of Cancer-Lung Cancer Group

aAdvanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy
bYoung Investigators European Organization for Research and Treatment of Cancer Lung Cancer Group, Brussels, Belgium
cRespiratory Oncology Unit, Department of Thoracic and Vascular Disease, CHU Grenoble Alpes, Grenoble, France
dBibliothèque des Sciences de la Santé, Université Libre de Bruxelles, Bruxelles, Belgium
eOncology Department, University of Turin, AOU San Luigi, Orbassano, Italy
fDepartment of Cancer Medicine, Gustave Roussy, Institut d’Oncologie Thoracique, Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France
gEuropean Organization for Research and Treatment of Cancer, Brussels, Belgium
hDepartment of Pulmonary Diseases, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
iDepartment of Radiation Oncology, Gustave Roussy, Institut d’Oncologie Thoracique, INSERM U1030, Université Paris-Saclay, F-94805, Villejuif, France
jDepartment of Intensive Care and Oncological Emergencies and Thoracic Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium

Received 16 December 2018; revised 8 May 2019; accepted 23 May 2019
Available online - 11 June 2019

ABSTRACT

Introduction: Synchronous oligometastatic (sOM) disease is an oncological concept characterized by a limited cancer burden. Patients with oligometastasis could potentially benefit from local radical treatments. Despite the fact that the sOM condition is well recognized, a universal definition, including a specific definition for NSCLC, is not yet available. The aim of this systematic review was to summarize the definitions of and staging requirements for use of the term synchronous oligometastatic in the context of NSCLC.

Methods: The key issue was formulated in one research question according to the population, intervention, comparator, and outcomes strategy. The question was introduced in MEDLINE (OvidSP). All articles dealing with sOM NSCLC and providing a definition of synchronous oligometastasis in NSCLC were selected and analyzed.

Results: A total of 21 eligible articles focusing on sOM NSCLC were retrieved and analyzed. In 17 studies (81%), patients had to be staged with magnetic resonance imaging or computed tomography of the brain, thoracic and abdominal computed tomography, and positron emission tomography. The total number of metastases allowed in the definitions ranged from one to eight, but in 38.1% of studies the maximum number was 5. Most of the publications did not define the number of involved organs or the maximum number of metastases per organ. For mediastinal lymph...
node involvement, only five articles (27.8%) counted this as a metastatic site.

Conclusions: No uniform definition of sOM NSCLC could be retrieved by this systematic review. However, extended staging was mandated in most of the studies. An accepted oncological definition of synchronous oligometastasis is essential for patient selection to define prospective clinical trials.

© 2019 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

Keywords: NSCLC; Oligometastatic disease definition; Synchronous; Systematic review

Introduction

Approximately half of all patients with NSCLC present with metastatic disease, with a median overall survival (OS) of 12 months.1 However, metastatic NSCLC is a heterogeneous status, characterized by different clinical presentations and prognoses according to anatomical site and number of metastases. In 1995, Hellman and Weichselbaum defined oligometastatic disease2 as a state of limited systemic metastatic burden in which eradication of oligometastases with local radical therapies (i.e., surgery and radiotherapy) could be curative in selected patients.3

Currently, no single, uniform, and reliable definition of synchronous oligometastatic (sOM) disease in NSCLC exists. In the European Society for Medical Oncology guidelines a paragraph is dedicated on oligometastatic disease, without a clear definition of this status, reporting that many clinical trials investigating local treatment of oligometastatic disease have limited inclusion to patients with no more than five metastases, but the vast majority of the trials have included patients with no more than three metastases.1 In the National Comprehensive Cancer Network guidelines patients with oligometastasis are defined as those with isolated or limited metastatic disease.4

A uniform definition is of importance as new effective local ablative therapies are developed. Their integration in therapeutic algorithms for sOM NSCLC has been tested in different prospective clinical trials.5,6

In an attempt to provide a definition of sOM NSCLC, the European Organization for Research and Treatment of Cancer (EORTC) Lung Cancer Group (LCG) developed a consensus definition based on clinical cases of sOM disease, a European survey on sOM disease, and a systematic review of the currently requested staging methods and definitions of the term synchronous oligometastatic used in clinical trials.7-9 Here we report the results of the systematic review.

Materials and Methods

The key issue was formulated in one question according to the population, intervention, comparator, and outcomes criteria (population, intervention, control, and outcomes). The standard reporting guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement [http://www.prismastatement.org/]) has been used for this systematic review. The research question was concentrated strictly on the clinical definition of sOM NSCLC. The research equation composed of Medical Subject Headings

![Figure 1. Search flowchart.](image-url)
descriptors and free text keywords, as reported in Supplement Table 1, was launched in MEDLINE (OvidSP) in October 2017.

A time cutoff of January 1, 1996, has been used to identify publications with patients staged according to the fifth and later TNM classifications. Titles and abstracts were screened independently by two authors (M. G. L. and N. G. L.) and reviewed by two other authors (A. M. D. and T. B.) to determine potentially relevant articles for the systematic review. The selection process

<table>
<thead>
<tr>
<th>Authors/Year</th>
<th>Type of Study</th>
<th>Patients, n</th>
<th>TNM Edition</th>
<th>Work-up</th>
<th>PET-MRI</th>
<th>Brain CT</th>
<th>Mediastinal Staging</th>
<th>Pathological Proof of Malignancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downey et al. (2002)</td>
<td>NRT</td>
<td>Single</td>
<td>23</td>
<td>Fifth</td>
<td>Complete</td>
<td>No</td>
<td>Yes</td>
<td>NA</td>
</tr>
<tr>
<td>Khan et al. (2006)</td>
<td>RS</td>
<td>Single</td>
<td>23</td>
<td>NA</td>
<td>Partial</td>
<td>Yes</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Inoue et al. (2010)</td>
<td>RS</td>
<td>Single</td>
<td>25</td>
<td>NA</td>
<td>Complete</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Cheruvu et al. (2011)</td>
<td>RS</td>
<td>Single</td>
<td>38</td>
<td>Seventh</td>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
</tr>
<tr>
<td>Collaud et al. (2012)</td>
<td>RS</td>
<td>Single</td>
<td>29</td>
<td>Sixth</td>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
</tr>
<tr>
<td>Congedo et al. (2012)</td>
<td>RS</td>
<td>Single</td>
<td>53</td>
<td>Fifth</td>
<td>Complete</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>De Ruyscher et al. (2012)</td>
<td>NRT</td>
<td>Single</td>
<td>40</td>
<td>Sixth</td>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
</tr>
<tr>
<td>Lopez Guerra et al. (2012)</td>
<td>RS</td>
<td>Single</td>
<td>78</td>
<td>Sixth</td>
<td>Incomplete</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Griffen et al. (2013)</td>
<td>RS</td>
<td>Multicenter</td>
<td>61</td>
<td>Fifth-seventh</td>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
</tr>
<tr>
<td>Nieder et al. (2014)</td>
<td>RS</td>
<td>Multicenter</td>
<td>23</td>
<td>Seventh</td>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Parikh et al. (2014)</td>
<td>C</td>
<td>Single</td>
<td>186</td>
<td>Seventh</td>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sheu et al. (2014)</td>
<td>DB</td>
<td>Single</td>
<td>90</td>
<td>Seventh</td>
<td>Incomplete</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Plones et al. (2015)</td>
<td>RS</td>
<td>Single</td>
<td>56</td>
<td>Sixth</td>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Su et al. (2015)</td>
<td>NRT</td>
<td>Multicenter</td>
<td>198</td>
<td>Sixth</td>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Xanthopoulos et al. (2015)</td>
<td>DB</td>
<td>Single</td>
<td>29</td>
<td>Seventh</td>
<td>Complete</td>
<td>Yes</td>
<td>NA</td>
<td>No</td>
</tr>
<tr>
<td>Fleckenstein et al. (2016)</td>
<td>DB</td>
<td>Single</td>
<td>39</td>
<td>Fifth-seventh</td>
<td>Complete</td>
<td>Yes</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Gomez et al. (2016)</td>
<td>RT</td>
<td>Multicenter</td>
<td>49</td>
<td>Seventh</td>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
</tr>
<tr>
<td>Johnson et al. (2016)</td>
<td>DB</td>
<td>Single</td>
<td>37</td>
<td>Fifth-seventh</td>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sakai et al. (2016)</td>
<td>RS</td>
<td>Single</td>
<td>18</td>
<td>Seventh</td>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Su et al. (2016)</td>
<td>NRT</td>
<td>Single</td>
<td>91</td>
<td>Sixth</td>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Iyengar et al. (2018)</td>
<td>RT</td>
<td>Single</td>
<td>29</td>
<td>NA</td>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

9PET (or thorax + abdomen CT and bone scan) without brain MRI/CT.
10Brain MRI/CT + PET (or thorax + abdomen CT and bone scan).
PICO, population, intervention, comparator, and outcomes; PET, positron emission tomography; CT, computed tomography; MRI, magnetic resonance imaging; NRT, no randomized trial; EBUS, endobronchial ultrasound; NA, not available, RS, retrospective series; C, cohort; DB, database.
<table>
<thead>
<tr>
<th>Authors/Year</th>
<th>Organs with ≥1 Mts, n</th>
<th>Mts, n</th>
<th>Mts per organ, n</th>
<th>N status as organ/N level</th>
<th>Prognostic Factor Analysis</th>
<th>Primary Outcome</th>
<th>Multivariate Analysis and OS</th>
<th>Metastatic Site Excluded</th>
<th>Mutational Analyses/Impact on Outcomes</th>
<th>Curative Intent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downey et al. (2002)</td>
<td>NA</td>
<td>1</td>
<td>1</td>
<td>No</td>
<td>No</td>
<td>Other</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Khan et al. (2006)</td>
<td>NA</td>
<td>1</td>
<td>1</td>
<td>No</td>
<td>No</td>
<td>Other</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Inoue et al. (2010)</td>
<td>NA</td>
<td>2</td>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>OS/PFS/Other</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Cheruvu et al. (2011)</td>
<td>NA</td>
<td>8</td>
<td>ND</td>
<td>Yes/N3</td>
<td>No</td>
<td>OS</td>
<td>GTV</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Collaud et al. (2012)</td>
<td>NA</td>
<td>1</td>
<td>1</td>
<td>No</td>
<td>Yes</td>
<td>OS</td>
<td>None</td>
<td>No</td>
<td>Yes (EGFR)/NA</td>
<td>Yes</td>
</tr>
<tr>
<td>Congedo et al. (2012)</td>
<td>NA</td>
<td>2</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
<td>OS</td>
<td>Weight loss, PET-CT, surgical resection</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>De Ruysscher et al. (2012)</td>
<td>NA</td>
<td>5</td>
<td>ND</td>
<td>No</td>
<td>No</td>
<td>OS</td>
<td>None</td>
<td>Pleural or pericardial effusion</td>
<td>Yes (EGFR)/NA</td>
<td>Yes</td>
</tr>
<tr>
<td>Lopez Guerra et al. (2012)</td>
<td>NA</td>
<td>4</td>
<td>ND</td>
<td>No</td>
<td>Yes</td>
<td>OS</td>
<td>Radiation dose, PS, tumor volume</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Griffioen et al. (2013)</td>
<td>NA</td>
<td>3</td>
<td>ND</td>
<td>No</td>
<td>Yes</td>
<td>OS/PFS/Other</td>
<td>None</td>
<td>No</td>
<td>No (EGFR)/Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nieder et al. (2014)</td>
<td>NA</td>
<td>3</td>
<td>3</td>
<td>No</td>
<td>Yes</td>
<td>OS</td>
<td>None</td>
<td>No</td>
<td>No (EGFR)/Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Parikh et al. (2014)</td>
<td>NA</td>
<td>3</td>
<td>ND</td>
<td>Yes/N3</td>
<td>Yes</td>
<td>OS</td>
<td>PS, N status, number of organs</td>
<td>No</td>
<td>Yes (EGFR)/Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sheu et al. (2014)</td>
<td>NA</td>
<td>3</td>
<td>ND</td>
<td>Yes</td>
<td>OS/PFS</td>
<td>Sex, PS, local therapy</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Piones et al. (2015)</td>
<td>NA</td>
<td>5</td>
<td>ND</td>
<td>No</td>
<td>Yes</td>
<td>OS</td>
<td>Bone mts</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Su et al. (2015)</td>
<td>NA</td>
<td>3</td>
<td>≤2 liver Mts</td>
<td>No</td>
<td>Yes</td>
<td>OS</td>
<td>Radiation dose (>63 Gy), tumor volume, PS</td>
<td>No</td>
<td>Yes (EGFR)/No</td>
<td>Yes</td>
</tr>
<tr>
<td>Xanthopoulos et al. (2015)</td>
<td>NA</td>
<td>4</td>
<td>ND</td>
<td>No</td>
<td>Yes</td>
<td>OS</td>
<td>Radiotherapy, female, number of metastatic organs</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Gomez et al. (2016)</td>
<td>NA</td>
<td>3</td>
<td>ND</td>
<td>Yes/N3</td>
<td>No</td>
<td>PFS</td>
<td>—</td>
<td>No</td>
<td>Yes (EGFR/ALK)/Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fleckenstein et al. (2016)</td>
<td>NA</td>
<td>5</td>
<td>3 for brain Mts</td>
<td>NA</td>
<td>Yes</td>
<td>OS/PFS</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Johnson et al. (2016)</td>
<td>NA</td>
<td>2</td>
<td>5</td>
<td>No</td>
<td>No</td>
<td>OS</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

(continued)
was divided into two parts: selection of abstracts and selection of full articles.

Abstracts were selected if they (1) focused only on lung cancers (NSCLC or SCLC), (2) dealt with sOM tumors, whatever the definition used by the authors, (3) provided a definition of oligometastatic status, (4) were a retrospective or prospective study, and (5) in the case of retrospective studies, the number of patients was at least 14 (adapted from the statistical Simon’s design).

Full articles were evaluated according to the previous criteria, and contributions in French, English, Dutch, and Italian were accepted.

Series focusing on a specific single metastatic organ (e.g., brain only or adrenal gland only) were excluded, as the focus of the review was oligometastasis instead of solitary metastasis. Also, systematic reviews, meta-analysis, and editorials were not included.

Additional publications were identified through examination of references cited in the eligible publications and were added if they also fulfilled the selection criteria. Disagreements were resolved by consensus.

The following variables were extracted from the publications for the definition of the sOM NSCLC: (1) number of metastases, (2) number of organs with at least one metastasis, (3) number of metastases per organ, (4) lymph node status, and (5) metastatic sites that were excluded.

Additional data describing the population, intervention, and outcomes were also extracted: (1) type of study; (2) single-center or multicenter experience; (3) number of patients enrolled; (4) staging system; (5) radiological assessment (thoracic, mediastinal, cranial, and extracranial metastatic staging); (6) pathological proof of malignancy; (7) primary outcome; and (8) curative therapeutic intent.

Results
The search strategy and potentially eligible abstracts are shown in Supplement Table 2. A total of 1125 potentially eligible titles were identified and 80 duplicates were removed. Among 1045 titles, 348 respected the abstract selection criteria and another nine articles were added by reviewing the references from the included articles. A total of 73 articles fulfilled the publication selection criteria, and among them we selected those that were focused on the sOM condition (i.e., articles focusing only on oligoprogression and oligorecurrence were excluded). We accepted articles if they evaluated both sOM disease (the main issue of the systematic review) and oligoprogression/recurrence. A total of 21 articles were eligible for this systematic analysis, as reported in Figure 1.
The main studies’ characteristics are reported in Table 15,6,11–18,20–26,28 Most of the published data were retrospective (n = 14 [66.6%]) and from a single center (n = 17 [81%]). The total number of patients with sOM NSCLC described in the 21 studies was 1215 (range 18–198), with a median number of 39.

Mandated Staging

In most of the studies (n = 17 [81%]), staging with thoracic and abdominal computed tomography (CT) scan, positron emission tomography with fludeoxyglucose F 18 integrated with CT (18F-FDG PET/CT), and brain magnetic resonance imaging (MRI) or CT was mandated. In particular, in 16 studies baseline brain imaging was mandated and baseline brain MRI was preferred in 14 articles (66.7%). Mediastinal staging was predominantly clinical (n = 13 [62%]) with 18F-FDG PET/CT, with only five articles (23.8%) mandating a pathological mediastinal staging by endobronchial ultrasound. A pathological proof of metastases was not requested in three articles (14.3%) but was mandated for all sites in one study (4.8%) and for at least one metastatic site in two studies (9.5%). In most studies (n = 15 [71.4%]) this information was not available (Table 1).

Population

The main studies’ characteristics are reported in Table 15,6,11–18,20–26,28 Most of the published data were retrospective (n = 14 [66.6%]) and from a single center (n = 17 [81%]). The total number of patients with sOM NSCLC described in the 21 studies was 1215 (range 18–198), with a median number of 39.
Outcomes

The main information about the applied definitions of sOM NSCLC is reported in Table 2. The total number of metastases used in the definition of sOM disease ranged from one to eight, and in eight studies (38.1%) the maximum number of metastases allowed was 5. In most of the series (n = 13 [61.9%]), we did not find any limitation or restriction about the number of organs involved with at least one metastasis; otherwise, when defined, the maximum number of allowed metastatic organs was 3 in one article (4.8%), 2 in four articles (19%), and 1 in three articles (14.3%).

The maximum number of metastases per organ was not defined in 12 articles (51.1%), and in three (14.3%) a partial definition was given (e.g., no more than two liver metastases, no more than three metastases for the brain, fewer than five in a single organ other than lung). When a maximum number of metastases per organ was defined, it ranged from one to five (six articles [28.6%]).

We checked whether mediastinal lymph nodes involvement was counted as a separate metastatic site. This was not specified in three studies (14.3%), in 13 studies (61.9%) lymph node involvement was not counted in the number of metastatic organs allowed, and in only five studies (23.8%) were mediastinal lymph nodes effectively counted as a metastatic site. In one article, all lymph nodal sites were considered to be metastatic sites, whereas in four articles only the N3 stations were counted as a metastatic site.

Of the 21 studies, 19 did not exclude any specific metastatic site, whereas in two articles uncontrolled brain, gastrointestinal, and skin metastases or pleural/pericardial metastases were not allowed.

OS was the primary outcome in most of the published articles (n = 18 [85.7%]), whereas in two articles (9.5%) it was progression free-survival (PFS). In four articles both OS and PFS were considered to be coprimary endpoints. In 18 articles (85.7%) the authors declared that the treatment of oligometastatic disease had a curative intent. All of the variables have been summarized in Table 2.

Discussion

Despite the fact that the sOM status is currently recognized in NSCLC, a uniform definition is not available and several issues are still open. Hence, we have performed a systematic review of the literature to offer scientific support on the published definitions of sOM NSCLC and to support the EORTC LCG consensus. On the basis of this systematic review, it emerges that a single clinical definition of sOM NSCLC does not exist; of the numerous retrieved publications on sOM disease, only a minority provided a clear definition (Table 3).

Although there is no clear definition of sOM disease, in most of the articles a complete radiological staging using brain MRI and 18F-FDG PET/CT was mandated. This is in line with the general consensus in scientific societies such as the European Society for Medical Oncology, National Comprehensive Cancer Network, and EORTC. Complete radiological staging remains important for the definition of sOM disease, but also the outcome of radical treatment of patients with sOM disease, as stage migration is a well-known phenomenon when introducing more sensitive diagnostic techniques as 18F-FDG-PET/CT and brain MRI. Potentially, this could be useful in better patient selection and, consequently, improvement in clinical outcomes.

Furthermore, 18F-FDG PET/CT was the main method required to stage both systemic disease and mediastinal lymph node status. On the other hand, it is unclear whether pathological proof of mediastinal lymph node involvement in the metastatic process is necessary in addition to the metabolic and morphologic assessment, probably because of excellent sensitivity and specificity of 18F-FDG PET/CT. A recent systematic review reported that 18F-FDG PET/CT is associated with a sensitivity and specificity in the identification of lymph node involvement with a value between 79% and 85% and between 87% and 92%, respectively.

In most articles, the authors did not report on the histopathologic proof of malignancy of the metastatic site. Apparently, mediastinal lymph node involvement is not uniformly considered relevant in the definition of sOM NSCLC or in the selection of patients eligible for combined local and systemic treatments. It is also uncertain whether involved mediastinal lymph nodes should be counted as a separate metastatic site. According to the TNM classification, mediastinal lymph nodes are considered locally advanced but not metastatic. However, from the available literature it is known that mediastinal lymph node involvement negatively affects the outcome of patients with sOM disease. In most of the studies included in this systematic review, mediastinal lymph node involvement was not counted as a separate metastatic anatomical site. Future prospective trials should establish or evaluate whether radical treatment of sOM NSCLC with mediastinal lymph node involvement is recommended and which levels (N1–N3) have an impact on outcomes of these patients.

Additionally, in all the included articles, we could not identify any specific metastatic site that was uniformly excluded from a radical combined oncological approach. This could be a selection bias, as some clinical presentations (e.g., leptomeningeal dissemination, lung lymphangitis) are associated with poor clinical outcomes and those patients have not been considered in the selected, mostly retrospective, studies for this
review because they are generally not included in trials involving sOM disease.

The level of evidence and the potential biases of the retrieved publications can limit the information provided by this review. The majority of the studies were retrospective single-center series, and outside of the maximum number of metastases, other information such as the number of organs with at least one metastasis, the maximal number of metastases per organ was a selection criteria in only a limited number of publications. Even for the maximal number of metastases, which was defined in all studies, no clear cutoff could be found; however, most of the studies did not allow more than five metastases. From the published papers we cannot deduce whether these data were missing or the authors had not considered them fundamental for their research.

Conclusions

Synchronous oligometastatic NSCLC refers to NSCLC in which the combination of systemic and local ablative treatments may influence tumor behavior. Although many studies have been published on this subject, the evidence from this systematic review suggests that a uniform and reliable definition of sOM disease does not exist. However, mandated diagnostic staging was very stringent with 18F-FDG PET/CT and imaging of the brain. Nevertheless, some consensus emerged in the cutoff defining the maximal number of metastases and the staging work-up.

The results of this systematic review served as a scientific basis for the consensus meeting on the definition of sOM disease, as initiated by the EORTC LCG, to propose a collective multidisciplinary definition of sOM NSCLC for use in prospective clinical trials.

Acknowledgments

This publication was supported by the European Organization for Research and Treatment of Cancer Research Fund.

Supplementary Data

Note: To access the supplementary material accompanying this article, visit the online version of the Journal of Thoracic Oncology at www.jto.org and at https://doi.org/10.1016/j.jtho.2019.05.037.

References

