Acquired \textit{EGFR} Mutation as the Potential Resistance Driver to Crizotinib in a \textit{MET}-Mutated Tumor

Marc-Antoine Benderra, MD,a Sandrine Aspeslagh, PhD,a Sophie Postel-Vinay, PhDa,b,c Ludovic Bigot, MD,c Thierry De Baere, PhD,d Yohann Loriot, PhD,c,e Ludovic Lacroix, PhD,f,g Christophe Massard, PhD,a,e Gilles Vassal, PhD,h Fabrice André, PhD,b,c Jean-Charles Soria, PhDa,b,c,*

aDITEP (Département d’Innovations Thérapeutiques et Essais Précoces), Gustave Roussy Cancer Campus, Villejuif, France
bFaculté de médecine Paris-Sud XI, Kremlin-Bicêtre, France
cU981 INSERM, Gustave Roussy Cancer Campus, Villejuif, France
dRadiologie interventionnelle, Gustave Roussy Cancer Campus, Villejuif, France
eDépartement de Médecine Oncologique, Gustave Roussy Cancer Campus, Villejuif, France
fLaboratoire de Recherche Translationnelle et Centre de Ressources Biologiques, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
gDépartement de Biologie et Pathologie Médicales, Gustave Roussy Cancer Campus, Villejuif, France
hDirection de la recherche clinique, Gustave Roussy Cancer Campus, Villejuif, France

Received 20 August 2015; accepted 24 August 2015

One major advance of the past decade in anticancer treatment is the advent of precision medicine and personalized therapy, which has led to several therapeutic successes.1,2 The efficacy of targeted therapies is unavoidably limited in time, however, and acquired resistance ultimately occurs.

Here, we report the case of a 59-year-old white woman with no smoking history who was diagnosed with metastatic adenocarcinoma of the lung. At diagnosis, restricted molecular analysis of the primary tumor showed epidermal growth factor receptor (\textit{EGFR}), B-Raf proto-oncogene, serine/threonine kinase (\textit{BRAF}), and Kristen rat sarcoma viral oncogene homolog (\textit{KRAS}) wild type and the absence of anaplastic lymphoma kinase (\textit{ALK}) translocation. After three lines of conventional therapy, she was included in a phase 1 trial evaluating a gamma secretase inhibitor, during which the disease remained stable for 18 months. A second lung biopsy sample (containing 40% tumor cells) was then obtained as part of the MOSCATO trial at Gustave Roussy Cancer Campus, in which next-generation sequencing, comparative genomic hybridization, and patient-derived xenografts from tumors that progress during administration of targeted therapy (ID-RCB number: 2014-A01147-40) are performed. Biopsy of the progressing pulmonary lymph node (containing 70% tumor cells) revealed a novel \textit{EGFR} amplification (log ratio 1.21) associated with an activating mutation of \textit{EGFR} located in a hot spot codon of p.Leu861Arg.

On the basis of this molecular profile, crizotinib (Xalkori, Pfizer) was initiated as part of the basket AcSé Crizotinib trial (NCT02034981). Crizotinib resulted in a 56% reduction in size of the target lesions that was followed by progression of the disease 10 months later (Fig. 1). The patient was then enrolled in the MATCH-R (A Prospective Trial to Study the Evolution of Clonal Architecture of Tumors from Patients Treated with Molecular Targeted Agents) trial at Gustave Roussy Cancer Campus, in which next-generation sequencing, comparative genomic hybridization, and patient-derived xenografts from tumors that progress during administration of targeted therapy (ID-RCB number: 2014-A01147-40) are performed. Biopsy of the progressing pulmonary lymph node (containing 70% tumor cells) revealed a novel \textit{EGFR} amplification (log ratio 1.21) associated with an activating mutation of \textit{EGFR} located in a hot spot codon of p.Leu861Arg.

*Corresponding author.
Disclosure: The authors declare no conflict of interest.
Address for correspondence: Jean-Charles Soria, PhD, Hôpital Gustave Roussy 114, Rue Edouard Vailland 94800 VILLEJUIF, France Service DITEP. E-mail: Jean-Charles.Soria@gustaveroussy.fr
© 2015 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
ISSN: 1556-0864
http://dx.doi.org/10.1016/j.jtho.2015.08.001
(p.L861R, allele frequency 53%) activating mutation on exon 21. The p.D1028H MET mutation was still present (allele frequency 6%). Given this molecular profile and the patient’s resistance to crizotinib, administration of the epidermal growth factor receptor (EGFR) inhibitor gefitinib was initiated.

Crizotinib is registered primarily for ALK-translocated non–small cell lung cancer. Therefore, most resistance
mechanisms have been described in this context and include the following: secondary ALK mutations (28%), ALK copy number gain (18%), EGFR mutations (36%, mainly exon 20 p.S768I and exon 21 p.L858R mutations), and rare KRAS mutations. Approximately one-fifth of the resistance mechanisms remain unknown. Interestingly, crizotinib was initially developed as a MET inhibitor, and some clinical trials are still evaluating it for that indication (NCT00585195). MET exon14 alterations (4% of adenocarcinomas of the lung) lead to crizotinib sensitivity. Whether mechanisms of resistance to crizotinib used in a MET-mutated population are the same as those in an ALK-translocated population is still unknown. Logic would suggest that they could be divided into two groups: specific resistance mechanisms (consisting of mutation of the kinase domain of the target of interest, ALK or MET, respectively), and common resistance mechanisms, which would include the activation of alternative pathways to bypass inhibition of the oncogenic driver. Interestingly, the EGFR mutation described here had not been observed previously in the crizotinib-resistant ALK-translocated population, which suggests greater “target specificity” of the resistance mechanisms.

This case also illustrates the challenges of tumors’ temporal and spatial heterogeneity: the fact that despite a deep coverage of 3086 X at the corresponding position, the EGFR p.L861R mutation was not detected at the initiation of crizotinib therapy does not rule out the possibility that it was already present at another tumor location or at undetectable levels in a subclone.

In summary, here we have described a previously unreported EGFR activating hot spot mutation as an acquired mechanism of resistance to crizotinib in a MET-mutated non–small cell lung cancer tumor. This illustrates the importance of repeated molecular profiling in precision medicine.

Acknowledgment
Sandrine Aspeslagh is a European Society for Medical Oncology (ESMO) fellow (Prix Georges Mathé 2014).

References