P3.16-22
Wedge Resection for Small Pulmonary Lesions with Preoperative Bronchoscopic Barium Marking
T. Furuya, T. Ii, S. Toda Department of Thoracic Surgery, Otsu City Hospital, Shiga/JP

Background: Barium marking is one of the various types of preoperative marking used with minimal pulmonary lesions. We evaluated the safety and efficacy of wedge resection for small pulmonary lesions after using preoperative bronchoscopic barium marking. Method: A retrospective study was conducted for patients who underwent barium marking before surgery between January 2009 and January 2018. Lesions were localized in advance by chest computed tomography (CT); then, a catheter was inserted into a bronchus close to the lesion under bronchoscopic guidance. Small amounts of barium sulfate (0.1—2 ml) was injected under fluoroscopic guidance. During surgery, the lung surface was observed with a thoracoscope to check color change by barium. In case of the absence of clear identification by visual inspection, the lung was palpated to search for the barium marker. Once barium was detected, a grasping forcep was used to hold the lesion and barium on bloc, and a wedge resection was performed with stapling devices. Result: We retrospectively investigated 29 lesions in 29 patients who underwent barium marking before surgery. Five lesions were solid nodules with a longest diameter of 0.5—1.4 cm (mean, 0.9 cm). Eight lesions were partially solid nodules with an overall longest diameter of 0.8—2.2 cm (mean, 1.3 cm) and solid longest diameter of 0.3—0.8 cm (mean, 0.5 cm). Sixteen lesions were pure ground-glass nodules (GGNs) with an overall longest diameter of 0.7—1.7 cm (mean, 1.0 cm). The only complication of marking was mild pneumothorax that did not require drainage in 1 patient. On performing CT after barium marking, the distance between marked barium and the lesion was 0.0—3.7 cm (mean, 0.9 cm). The period between marking and surgery was 5—33 days (median, 15 days). We performed wedge resection in all cases, and all lesions were resected completely. Pathological results showed adenocarcinoma in situ in 20 patients, primary lung adenocarcinoma in 4, metastatic pulmonary tumor in 3, an inflammatory pulmonary nodule in 1, and an intrapulmonary lymph nodule in 1. All margins were pathologically negative. The only postoperative complication was arrhythmia that required an anti-arrhythmic drug in 1 patient. Conclusion: Wedge resection for small pulmonary nodules after using preoperative bronchoscopic barium marking was safely conducted with satisfactory outcomes. Keywords: wedge resection, Small pulmonary lesions, bronchoscopic barium marking

P3.16-23
F. Gradica, D. Argjiri, L. Lisha, A. Cani, F. Kokici, I. Avdiu, H. Nino, Y. Vata, V. Rexha, S. Gradica* Thorax Surgery, University Hospital Shefqet Ndroqi, Tirana/AL, *Pneumology, University Hospital “shefqet Ndroqi”, Tirana/AL, †Thorax Surgery, University Hospital Shefqet Ndroqi, Tirane/AL, ‡Anesthesie Reanimation, University Hospital “shefqet Ndroqi”, Tirane/AL, §Anesthesie Reanimation, University Hospital "shefqet Ndroqi", Tirane/AL, ¶Oncology, University Hospital Center “mother Theresa”, Tirane/AL, ‖Oncology, University Hospital Center “mother Theresa”, Tirane/AL, ‡‡Visceral Surgery, University Hospital Shefqet Ndroqi, Tirane/AL, §§Pharmacy, Public Pharmacy Service, Tirana/AL, §§§Pharmacy, Public Pharmacy Service, Tirane/AL

Background: Soft tissues include muscle, fat, blood vessels, nerves, tendons and joint linings (synovial tissue). Cancerous tumors (sarcomas) of the soft tissue are rare, but there are many types. Because soft tissue sarcomas arise from a number of different kinds of tissue, they can occur anywhere in the body. Outcomes for people with soft tissue sarcomas depend on the type, size, grade, stage and location of the tumor, as well as a person’s age and general health. Classification from grade are: low, middle, high differentiations... Aim of Study: Our objective was to introduce a patient diagnosed with neglected giant soft tissue chest wall liposarcoma. Method: Records of 32 patients admitted to our institution from January 2004 to July 2017 were treated in our clinic A patient with the initials K.B boredd 17/06/1950. He was admitted to our hospital in thoracal surgery at 19.09.2012 with diagnosis: soft tissue tumor left chest wall. Pacients without other diseases. We did all necessary examinations, CT, MRI and determined the extent of tissue tumor. Result: Ages ranged from 13 to 86 years (median, 38 years); the ratio of male to female patients was 3:1. The initial complaint was mass or pain in 98% of the cases. Histologic types were as follows: desmoid tumor (n = 5), 15%; liposarcoma (n = 7), 21%; rhabdomyosarcoma (n = 6), 18%; fibrosarcoma (n = 4, 12%); malignant peripheral nerve tumor (n = 3, 9%); malignant fibrous histiocytoma (n = 1, 3%); tenosynovial sarcoma (n = 1), 3%; hemangiopericytoma (n = 2), 6%; alveolar soft part sarcoma (n = 2), 6%; and other types (lymphoma) (n = 2), 6%. Resection was the primary treatment in 28 cases (87%). All patients were treated by multimodal treatment, chemoradiation therapy and surgery. Local recurrence developed in 25%. Metastases occurred in 15 (46%) of the cases (metachronous in 12, synchronous in 3) and were more common in patients with high-grade disease than in those with low-grade disease. Overall 5-year survival was 60%. Five-year survival rate for those with high-grade sarcomas was significantly lower than that for low-grade sarcomas. Tumor size and age of patient were not prognostic. Conclusion: Surgery is important in the treatment of most sarcomas. Additional treatments, including chemotherapy and radiation therapy, may be administered before and/or after surgery. Thoracic wall soft-tissue sarcomas are best controlled by wide surgical resection. Keywords: sarcoma, Soft tissue, chest wall resection

P3.16-24
Prognostic Value of Positive Lymph Node Ratio in Non-Small Cell Lung Cancer
J. He H. Pan Thoracic Surgery, Guangzhou Medical University First Affiliated Hospital, Guangzhou/CN

Background: Previous studies had shown the importance of lymph node (LN) resection in T1 NSCLC and recommended no less than 16 LN examination. Few of them reported the role of positive lymph node ratio (PLR). This study was performed to elucidate the prognostic value of PLR in T1 LN positive NSCLC. Method: Patients with T1N1-2M0 NSCLC who underwent complete tumor and LN resection in the SEER database from 2009 to 2014 were identified. PLR was defined as positive LN/examined LN. The cut-off value was determined by ROC. The overall survival of patients was evaluated using Kaplan-Meier and Cox regression analysis. Those whose LN examination number was less than 16 were excluded. Result: A total of 362 cases were included in the primary cohort. Among them, female accounted for 51.7%. The median number of examined and positive lymph nodes were 21 and 2, respectively. Patients with lower PLR had better OS in N2 but no significant result was observed in N1. Conclusion: PLR has significant prognostic value in N2 group. Greater PLR predicts worse prognosis. More cases and clinical data are warranted to verify the effect of PLR in the contemporary staging system. Keywords: lymph node, NSCLC, SEER